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Abstract

Voting in single stage, direct systems, where voters submit scores for each candidate

and a winner is selected, depending on the voting rule used, has been studied exten-

sively in the social choice literature. However, numerous types of elections involve a

multi-stage process, with primary systems being a notable example. In a recent line

of research, focused on analysing the distortion of voting rules under the primary sys-

tem, a model to perform such an analysis has been introduced. In this project, we use

the same model to perform a quantitative instance-wise comparison between the two

systems as well as an average-case analysis on the distortion of several voting rules.

Furthermore, we extend the model to allow the analysis of strategic candidacy games.

We adapt two existing classes of games for the direct system to the primary model

and introduce a novel one, specifically adjusted to the primary system. We analyse

the properties of their pure strategy Nash equilibria in one dimension, convergence

of different types of best-response dynamics and prove that the associated decision

problems are NP-complete.
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1 Introduction

1.1 Motivation

Voting is one of the fundamental tools in countless decision-making scenarios, as it ag-

gregates voters’ ranked preferences over a set of candidates or alternatives to produce

an outcome reflecting their collective opinion. Generally, given the voters’ preferences, a

voting rule is used to determine the winning candidate. Perhaps, the most widely known

application of voting is that of political elections. As such, it is natural to think that a

voter’s preferences may be influenced by the candidates’ standings on matters that are

important to them, which can include: taxes, voting and abortion rights, environmental

issues or gun control. Such a setting can be modelled by the use of a metric space, where

the candidates and voters are placed, and the associated distance function determines the

likeability of candidates.

Multi-stage voting systems are commonly used in political settings in countries such as

the United States, the United Kingdom, Russia, Hungary or Costa Rica. An example of

such a system is the primary one, where voters affiliated with a party vote over candidates

from their own party. The primary winners then advance to a general election, where the

same set of voters submit their preferences again, without taking into account the party

affiliation. Given their use, primary systems do present interest, from a theoretical point

of view, especially in a comparison against the direct system.

Any political election can be susceptible to forms of manipulation, either from the side

of voters, who might be incentivised to vote for a different candidate than their most

preferred alternative, or from the side of candidates, who themselves, can have incentives

that influence their decision on whether to participate in an election or not (examples of

such incentives could be that candidates have their own preferences on who they would

like to win the election, or that the costs associated to participating in the election may be

insurmountable if they are not capable of winning). While strategic candidacies in direct
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voting systems have received significant attention, for the primary system this aspect has

not yet been investigated.

1.2 Contribution

The contributions related to this project are twofold. Firstly, we extend the work of

Borodin et al. [2019] by performing an instance-wise comparison between the primary and

direct systems in one dimension, using several voting rules and focusing on the utilitarian

social cost of the resulting winners. For the case where voters and candidates are uniformly

distributed, under plurality voting, the primary system outperforms the direct one in

the vast majority of cases. However, for the Condorcet-consistent Copeland rule, the

direct system is almost always better. Next, we perform our own average-case analysis on

the distortion of plurality, anti-plurality, plurality with run-off, Borda, Harmonic Borda,

Copeland and single transferable vote (STV) voting rules under the two systems. Although

we adopt a slightly different methodology in our simulations than Borodin et al. [2019] do,

the results are similar: plurality voting is better used in primary systems, while Condorcet-

consistent rules are more suitable for the direct system.

Secondly, we present the first analysis of strategic candidacy games under the primary

system, focusing on the properties and existence of pure strategy Nash equilibria in one

dimension, as well as the reachability of such states by two categories of best-response

dynamics. Moreover, we investigate the computational complexity of several associated

decision problems, which we prove to be NP-complete, when higher dimensions are consid-

ered for the metric space. Lastly, for keen strategic candidacy games (i.e. where candidates

receive additional utility if they participate in an election), we perform an average-case

analysis on the number of equilibria for a candidate set of size four, for which we conclude

that such games generally have only one pure strategy Nash equilibrium, with slightly

more variation for a small value of the participation bias.
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1.3 Project Structure

• Section 2 contains a brief overview of the related literature.

• Section 3 describes the model that will be used throughout this project to represent

election instances.

• In Section 4 we describe the results of our comparison between the two systems for

several voting rules

• In Section 5 we present our analysis of strategic candidacy games under the primary

system.

• Section 6 presents a summary of the work that has been conducted in this project.
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2 Related Work

2.1 Quality of Voting Rules

An important area of research in social choice theory concerns selecting appropriate voting

rules for different applications, including traffic applications [Dennisen and Müller, 2015],

constructing meta-search engines and reducing their spam [Dwork et al., 2001], movie

recommender systems [Ghosh et al., 1999] and political elections (Gehrlein et al. [2017]

provide a great overview, not limited to political elections).

For this purpose, there are several main lines of research. Firstly, there is the normative

approach, which describes axioms that a voting rule should satisfy. Known voting rules

are then compared against these axioms. Distinguished papers in this area are those of

May [1952], Arrow et al. [1963], Gibbard [1973], Satterthwaite [1975] and Young [1975]. A

general conclusion would be that there is no perfect voting rule. A famous result, known

as ”Arrow’s impossibility theorem” states that no voting rule satisfies five reasonable con-

ditions termed nondictatorship, Pareto dominance, unrestricted domain, social ordering

and independence of irrelevant alternatives.

Secondly, a noise model can be used, where it is assumed that an optimal candidate exists

and voters’ votes coincide to noisy estimates of the optimal candidate. A voting rule then

corresponds to the maximum likelihood estimate of the optimal candidate [de Caritat de

Condorcet, 1785]. Conitzer and Sandholm [2012] investigate for which widely used voting

rules there exists a noise model for which the maximum likelihood estimate is the rule

itself. Another approach, called distance rationalizability, describes a voting rule in terms

of a class of elections with a clear winner as well as a distance function [Meskanen and

Nurmi, 2008; Elkind et al., 2009, 2010].

Finally, spatial models, where voters and candidates are situated into a metric space have

also been studied extensively [Plott, 1967; Enelow and Hinich, 1984, 1990; Ordeshook
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and McKelvey, 1990; Schofield, 2007; Skowron and Elkind, 2017; Elkind et al., 2017;

Anshelevich et al., 2018] and are a very popular choice, for their intuitive interpretation:

the closer a voter is to a candidate, the more they prefer that candidate. The quality of the

winner produced by a specific voting rule for a given election instance is measured by the

sum of distances between them and each voter, which is related to their utilitarian social

welfare. As a result, candidates with a lower utilitarian social cost are more preferred.

In this setting, it is natural to investigate the distortion of specific voting rules, a term

initially defined by Procaccia and Rosenschein [2006] and subsequently investigated in the

works of Feldman et al. [2016]; Goel et al. [2017]; Anshelevich et al. [2018]; Munagala and

Wang [2019]; Gkatzelis et al. [2020]; Kempe [2020a,b], who all consider spatial models, as

well as Caragiannis and Procaccia [2011]; Boutilier et al. [2015]; Caragiannis et al. [2017],

who follow an older approach with normalised utilities. The distortion of a voting rule

represents a worst-case notion; more precisely, it is the supremum of the ratio between the

utilitarian social cost of the winning and optimal candidates of an election.

Notably, Anshelevich et al. [2018] (we note that this paper combines the results of two other

papers, presented in 2015 and 2017, respectively) are the first to measure the distortion

of widely known voting rules, including plurality, Borda, Copeland, STV. The Harmonic

Borda voting rule, introduced by Boutilier et al. [2015] is also included in their analysis.

The distortion of plurality and Borda is shown to be linear in the number of candidates;

more precisely, 2m− 1, where m is the number of candidates, while the distortion of STV

is upper bounded by O(lnm) and lower bounded by O(
√

lnm). This means that STV

yields much better results in the worst case. Moreover, the distortion of the Harmonic

Borda voting rule is proved to be asymptotically better than those of plurality or Borda,

although it is very close to being linear. However, all these voting rules are outperformed

by Copeland, which has a distortion of 5. Lastly, the authors provide a lower bound

of 3 for the distortion of any deterministic voting rule (plurality, Borda, Copeland and

Harmonic Bords are all deterministic voting rules, while STV, in this paper, is presented

as non-deterministic).

Initially, the Ranked Pairs voting rule was conjectured to achieve a distortion of 3. Goel
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et al. [2017] refute this conjecture about the distortion of the Ranked Pairs voting rule,

which is shown to have a lower bound of 5 - in fact, Kempe [2020a] proved that its

distortion is Θ(
√
m). Before the findings of Munagala and Wang [2019] were presented,

no deterministic voting rule with a distortion lower than 5 was known. However, in

their paper, the authors design a new voting rule, which has a distortion of 2 +
√

5, or

approximately 4.236, making considerable progress in constructing a deterministic voting

rule with a distortion of 3. With the help of the properties that a voting rule needs

to satisfy in order to achieve a distortion of 3, outlined by Munagala and Wang [2019],

Gkatzelis et al. [2020] successfully described a voting rule with a distortion of 3, termed

”plurality matching”.

As for randomised voting rules, Feldman et al. [2016] evaluate the distortion for randomised

truthful voting mechanisms and come up with a tight bound of 2 on the line, as well as other

lower bounds for more general metric spaces. Goel et al. [2017] also consider randomised

tournament rules and provide lower bounds for their distortion. Anshelevich and Postl

[2017] slightly improve the lowest value of the distortion of a voting rule, by showing that

the Randomised Dictatorship voting rule, where a voter is randomly selected and their

most preferred candidate is declared the winner, has a distortion of 3− 2
n , where n is the

number of voters. Because it is often the case that the number of candidates is smaller

than the number of voters, the result of Kempe [2020b] also needs to be mentioned, as

the author describes a randomised voting rule with a distortion of 3− 2
m , where m is the

number of candidates.

However, a different direction of work on the notion on distortion was firstly introduced

by Procaccia and Rosenschein [2006] and subsequently considered in Caragiannis and

Procaccia [2011]; Boutilier et al. [2015]; Caragiannis et al. [2017]. The approach in the

mentioned papers is that, for each voter, utilities are assigned to candidates, depending

on their preference. As a result, the notion of distortion can be analogously defined.

Procaccia and Rosenschein [2006] proved that, under this setting, the Borda voting rule

has an unbounded distortion. The distortion of the plurality voting rule was shown to be

Ω(m2) [Caragiannis and Procaccia, 2011] and in fact, it was also proven, by Caragiannis

et al. [2017], that no deterministic voting rule can have a distortion that improves the
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bound of plurality, i.e. Ω(m2). Lastly, Boutilier et al. [2015] investigated randomised

voting mechanisms and described lower and upper bounds for their distortion, as well

as an average-case model, for which voters’ utilities for each candidate are drawn from

a known distribution. They also showed that when the distribution is uniform over an

interval, the optimal voting mechanism is precisely the Borda voting rule.

Coming back to spatial models, Elkind et al. [2017] analysed several multiwinner voting

rules by performing various experiments in a two dimensional Euclidean model, with voters

and candidates generated using four distributions. They looked at which voting rule would

be best to be used, for the following scenarios : parliamentary elections, portfolio/movie

selection or shortlisting.

For additional information on the notion of distortion, under both types of models de-

scribed, we refer the reader to Anshelevich et al. [2021], who offer a very concise summary

of the work that has taken place in this research area over the years.

All the above mentioned papers have in common the fact that they analyse direct elections,

where voters submit their preferences and a candidate is declared the winner, depending

on the voting rule used. A recent line of research focuses on primary systems [Borodin

et al., 2019], a type of multi-stage elections, where voters and candidates are affiliated to

one party and each party hosts its own primary election, where voters affiliated to that

party vote over candidates from the same party and a primary winner is designated. Each

primary winner then advances to the general election, where the party affiliation is no

longer relevant: a voter will vote for the candidate they prefer the most.

Borodin et al. [2019] use a spatial model to define election instances, where voters and

candidates are situated in a metric space. Three types of families of instances are consid-

ered, depending on the metric space. The most general type is an arbitrary metric space,

followed by the metric space Rk with the Euclidean distance. The last type of family con-

tains separable instances in Rk, where both voters and candidates from opposing parties

must be separated by an hyperplane. To perform a quantitative analysis of the direct and

primary systems, the authors rely on the notion of distortion, over the three types of fam-

ilies of instances. What enables them to quantitatively compare the distortion of a voting
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rule is that once the set of voters and candidates, as well as their party affiliations are

fixed, the voting rule is used to determine the winner in both the direct and the primary

systems. Resulting winners can then be compared in terms of their utilitarian social cost.

Important results are obtained in their theoretical analysis, which focuses on primaries

with two parties.

Firstly, they show that any voting rule can have an unbounded distortion, for families

of separable instances in R. However, their result is restricted to the case where one of

the parties has disproportionally less voters affiliated with it, i.e. the ratio between the

number of voters associated with that party and the total number of voters tends to 0,

as the number of voters tends to infinity. Next, a stronger result is related to individual

instances, rather than families of instances. More specifically, if we set an election instance,

an upper bound for the ratio between the utilitarian social cost of the winner and that of

an optimal candidate in the primary system can be obtained. The upper bound depends

on the ratio between the utilitarian social cost of the winning candidate and that of an

optimal candidate in the primary of each party, which can be viewed as a direct election.

This implies that the distortion of a voting rule under the primary system is also upper

bounded by its distortion under the direct system, multiplied by a constant. This result

holds for any of the three types of families of instances.

Secondly, while the previous results imply that the distortion under the primary system

can only be a constant times higher than the distortion under the direct system, the

authors also prove that the distortion under the direct system is upper bounded by the

distortion under the primary system, for the first two types of families of instances, i.e.

excluding separable instances. In other words, in terms of distortion of the voting rule

used, the primary system will never be outperformed by a large margin by the direct

system.

Lastly, the advantages of party separability in R are analysed: a voting rule is constructed

such that its distortion under the primary system is upper bounded by a constant, while the

distortion under the direct system is unbounded. This shows that primaries have potential

to perform significantly better than direct elections, while the converse has already been
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shown not to be true.

Several experiments are carried out to measure the distortion of the plurality, Borda, STV,

Copeland and maximin voting rules, by varying the value of k for the metric space Rk

with the Euclidean distance, and for a fixed number of voters and candidates, with the

voters uniformly distributed in [0, 1]k. In their average-case analysis, the primary system,

for both separable and non-separable instances, produces a winner with a lower utilitarian

social cost than the direct system, the only exception being plurality, for non-separable

one dimensional instances, for which the direct system is better, by a very small margin.

The results of the experiments suggest that a quantitative, instance-wise, analysis of the

two systems, for separable instances, might yield interesting results. We show that even

for very restricted elections, with both voters and candidates uniformly distributed, the

direct system can still produce a winner with a lower utilitarian social cost than that of

the winner produced by the primary system.

2.2 Strategic Candidacies

Another widely researched topic is that of strategic candidacies for direct elections, where

candidates also have preferences over who can win the election. As a result, a candidate

may prefer to join or withdraw from an election, if they are capable of manipulating the

outcome of an election, such that the resulting winner is more preferred. Naturally, this

sets the foundations of a non-cooperative strategic candidacy game, for which it is of high

interest to characterize its pure strategy Nash equilibria (PNE).

Strategic candidacy games were introduced by Dutta et al. [2001], where they investigated

whether the strategy profile with all candidates running is a pure strategy Nash equilibrium

for a strategic candidacy game where candidates have self-supporting preferences (i.e. a

candidate’s most preferred outcome of an election is them winning). Their response is in

the negative, for any unanimous (i.e. if all voters have the same most preferred candidate,

then that candidate wins the election) and non-dictatorial (a voting rule is a dictatorship if

the most preferred candidate of a voter, selected before looking at other voters’ preferences,
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is declared the winner) voting rule.

Lang et al. [2013] build on the results of Dutta et al. [2001] and prove that a game with four

candidates and an odd number of voters has at least one PNE, if a Condorcet-consistent

voting rule (e.g. Copeland, maximin) or Borda is used, whereas for others voting rules,

such as plurality, plurality with run-off or STV, the result no longer holds. The positive

results for Borda and maximin do not generalise for games with more than four candidates,

however, provided the number of voters is odd and the voting rule used is Copeland, any

strategic candidacy game admits at least one PNE.

Polukarov et al. [2015] focus on equilibrium dynamics under plurality voting. In dynamic

candidacies, given a strategy profile, which can be seen as the initial state of the dynamics,

unless that profile is a PNE, there is at least one agent who would prefer to deviate from

the profile, i.e. either join or withdraw from the election. This is defined as an improving

move and a state is an equilibrium state if no agent has an improving move. An improving

path is then a sequence of states, such that each state is obtained by an improving move

from the previous one and they raise the question whether an improvement path can reach

an equilibrium state, which is answered in the positive, as every improvement path is finite

with probability 1. This result continues to hold for a more general setting, with refusing

voters, i.e. voters that block their most preferred candidate if they withdraw from the

election, and may only unblock them if all other running candidates are also blocked.

Moreover, several decision problems are introduced, related to reachability properties of

equilibrium dynamics, which are shown to be either NP-complete or NP-hard.

Obraztsova et al. [2015] consider lazy candidacies under plurality voting, where candidates

prefer to withdraw if their participation cannot influence the winner of the election. They

show that if a candidate is Pareto dominated by another candidate, who is preferred by

a tie-breaking rule, then that candidate cannot be the winner in a PNE of the game.

This highlights the importance of the tie-breaking rule and its possible impact over the

outcome of an election. Other results are related to Condorcet winners: if the game

admits a Condorcet winner, then the strategy profile with the Condorcet winner being the

only candidate running is a PNE, if they have self-supporting preferences. However, they
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also give an example of a game that has a PNE where the Condorcet winner does not

participate in the election. Two important decision problems, related to deciding whether

a game has a PNE and a PNE with a specific candidate as the winner are shown to be

NP-complete. Lastly, a weaker type of best-response dynamics than those considered in

Polukarov et al. [2015] are studied, called J-dynamics and W-dynamics. In this setting,

candidates are not allowed to join an election if they had previously withdrawn. As a

result, the convergence of such dynamics is guaranteed in at most m steps, where m is

the number of candidates. Examples of games where J-dynamics terminate in a state

with all candidates running, or for which no W-dynamics converge to a state with the

Condorcet winner running are presented. Lastly, four decision problems, related to these

types of dynamics and their convergence to specific states of the game, are proven to be

NP-complete.

Lang et al. [2019], motivated by the 2000 presidential elections in the United States be-

tween Bush, Al Gore and Nader, propose a different type of strategic candidates which

they term keen candidacies. Candidates’ preferences are defined in terms of utilities: the

more a candidate is preferred, the higher their utility. Opposite to lazy candidacies, there

is a participation bias which contributes to the overall utility a candidate receives from an

election, so that a candidate will always prefer to run in the election, if their participation

cannot influence the election winner. As a result, even for a small value of the partic-

ipation bias, several results that are true for standard candidacy games no longer hold.

Firstly, for games that admit a Condorcet winner, the strategy profile with the Condorcet

winner being the only candidate running, is not a PNE, because, as the authors prove,

in each PNE of keen candidacy games there must be at least two agents running. Sec-

ondly, there are games with four candidates that do not have a PNE, even if the voting

rule used is Copeland, in contrast with the results obtained for standard candidacy games

by Lang et al. [2013]. The same is also true if plurality is used instead of Copeland, in

line with the properties of standard candidacy games. Next, multi-party elections with

medium participation bias are considered, for which there are three properties that each

PNE must satisfy. Moreover, an exponential upper bound for finding all equilibria is given.

Intuitively, for large values of the participation, there is a unique PNE; more specifically,
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the strategy profile with all candidates running. In the last part of their paper, the au-

thors look at the number of equilibria of keen strategic candidacy games, which decreases

significantly, compared to the upper bound, even for small values of the participation bias.

Lastly, an average case analysis is performed, to identify the number of equilibria for this

type of games in practice, for various values of the participation bias. The two voting

rules considered are plurality and Copeland and results are presented for games with five

candidates, although for three to eight candidates, the authors claim to have very similar

results. The trend of both voting rules is that, as the participation bias increases, the

number of equilibria is almost always one. In fact, intuitively, in most of those cases, the

strategy profile with all candidates running is the unique PNE. For plurality, there are

a few more instances, for smaller values of the participation bias, that admit up to four

PNE, however, for Copeland, irrespective of the value of the participation bias, almost all

instances admit only one PNE.

Brill and Conitzer [2015] focus on single-peaked preferences, i.e. where voters and candi-

dates can be positioned on a line, but in their analysis, strategic candidacies and strategic

voting are combined. Importantly, without enforcing single-peaked preferences, they prove

that computing the candidate stable set is NP-complete, when voting by succesive elimi-

nation is used.

Sabato et al. [2017] introduce a new model of strategic candidacies, called real candidacy

games, where candidates have a continuous range of positions on a line, which can influence

the preference of the voters. They analyse the existence of PNE, for different types of

voting rules, including plurality and Condorcet-consistent ones, under various scenarios,

as well as the impact of lexicographic and random tie-breaking rules.
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3 Preliminaries and Model

We use similar notations to those in the related literature and, following the works of

Borodin et al. [2019], we also use a spatial model. A useful observation is that such

models are not restrictive by any means, as arbitrary preference orders over candidates

can be expressed if the dimension of the metric space is large enough. We denote the set

of voters by V and the set of candidates by A. Both voters and candidates are situated in

the metric space (M,d), where M is a set and d is a distance function, d : M ×M → R,

satisfying the following properties:

• Non-negativity: ∀a, b ∈M,d(a, b) ≥ 0

• Identity of indiscernibles: ∀a, b ∈M,d(a, b) = 0⇔ a = b

• Symmetry: ∀a, b ∈M,d(a, b) = d(b, a)

• Triangle inequality: ∀a, b, c ∈M,d(a, b) + d(b, c) ≥ d(a, c)

ρ : V ∪A→M positions voters and candidates in M .

The candidate preferences of a voter are entirely dependent on the distances between

their position in the metric space and those of the candidates. Formally, a voter v prefers

candidate a to candidate b, written a �v b, if and only if d(ρ(v), ρ(a)) < d(ρ(v), ρ(b)) (we

sometimes use d(v, a) for the distance between the positions of v and a, for readability

purposes). To address the existence of equidistant candidates for a voter, we use a tie-

breaking rule /, so that if d(ρ(v), ρ(a)) = d(ρ(v), ρ(b)) and a / b, then a �v b and we say

that ”a is preferred to b by the tie-breaking rule”. In other words, / is a priority order

over the candidates set, A.

As mentioned, when dealing with primary systems, voters and candidates need to be

affiliated to a party. We focus on the setting with two parties, denoted 1 and −1 and

we use π : V ∪ A → {1,−1} to assign parties. As a result, in the primary of each party,

only voters affiliated with that party are able to vote for candidates from the same party.
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Scores are assigned to each candidate and, depending on the voting rule used, a candidate

is declared the primary winner. The winners from the primary of each party then advance

to a general election, where the majority rule is used, as it is known that for two candidates,

most voting rules are equivalent to the majority rule.

An instance of an election is then a tuple, I = (V,A,M, d, ρ, π, /) for which, irrespective

of which of the two systems is used (primary or direct), a candidate will be declared the

winner. If the direct system is used, we note that the party affiliation function π has no

effect on the outcome of the election. The utilitarian social cost of a candidate c ∈ A is

defined as CI(a) =
∑

v∈V d(ρ(v), ρ(c)). Moreover, for each instance I, there must exist

at least one optimal candidate aOPT ∈ arg mina∈AC
I(a), who has the lowest utilitarian

social cost, out of all candidates in A. For simplicity, we omit the superscript I when

describing the utilitarian social cost of a candidate if it is clear from the context to which

election instance we are referring.

Since we will be focusing on an instance-wise comparison of the two systems, it suffices to

define the distortion of a voting rule f as the ratio between the utilitarian social cost of

the winner produced by f for an election instance I, and that of the optimal candidate,

φ(f, I) = CI(f(I))
mina∈A CI(a)

, however, we once again remind the readers that distortion is usually

a worst-case notion.

Lastly, we describe the voting rules that will be mentioned in the following sections:

• Plurality: Each voter gives one point to their most preferred candidate and the

candidate who has received the highest number of votes in declared the winner. In

the case that there are several candidates tied with the highest score, the tie-breaking

rule / is used to declare a winner.

• Anti-plurality: Each voter gives one point to their least preferred candidate and

the candidate with the lowest number of points received is declared the winner. In

case of ties, the tie-breaking rule / is used to declare a winner.

• Plurality with run-off: Each voter gives one point to their most preferred candi-

date and the first two candidates, in terms of the number of points received advance
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to the run-off, unless there is one candidate who has received more than 50% of the

points, who is declared the winner. In the run-off, the voters vote for one of the

two candidates and the candidate with the highest number of votes is declared the

winner. Any ties are resolved according to the tie-breaking rule /.

• Borda: Each voter gives m − i points to the candidate ranked the ith in their

preferences, for 1 ≤ i ≤ m, where m is the number of candidates. The candidate

with the highest number of points is declared the winner. Ties are resolved according

to the tie-breaking rule /.

• Harmonic Borda: Similarly to Borda, each voter gives 1
i points to the candidate

ranked the ith in their preferences, for 1 ≤ i ≤ m, where m is the number of

candidates. The candidate with the highest number of points is declared the winner.

Ties are resolved according to the tie-breaking rule /.

• Copeland: The score of each candidate is the difference between the number of

pairwise elections they win and the number of pairwise elections they lose. The can-

didate with the highest score is declared the winner. Any ties are resolved according

to the tie-breaking rule /.

• Single Transferable Vote (STV): Each voter gives one point to their most pre-

ferred candidate and if no candidate has received more than 50% of the points, the

candidate with the lowest number of points is eliminated, with ties being resolved

according to the tie-breaking rule /. The voters who had previously given points to

the eliminated candidate, give their point to their most preferred candidate who is

not yet eliminated. The procedure finishes when there exists a candidate who has

received more than 50% of the points.

An important concept in social choice theory is that of a Condorcet winner. A Condorcet

winner is a candidate that wins against any other candidate in a pairwise election. We

note that out of the seven voting rules we described, Copeland is the only one that is

Condorcet-consistent, i.e. it always selects the Condorcet winner, if one exists. As a

result, the Condorcet winner would obtain a score of m − 1, if the Copeland voting rule

were to be used.
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4 Comparison Between Primary

and Direct Systems

In this section, we perform an instance-wise comparison between the two systems in one

dimension, based on the utilitarian social cost of the winning candidates. We continue

with an average-case analysis of the distortion of the described voting rules under the

two systems, for which we also consider higher dimensions. More specifically, for the

instance-wise comparison, the metric space used is (R, d), where d is the standard Eu-

clidean distance. Most of the results are related to voting under plurality, however, we

also consider Condorcet-consistent voting rules and make an interesting observation for

STV.

To help with readability, we use scg(a, {a, b}) to denote the score of candidate a in a general

election against candidate b. In the primary system, the general election will always be

between at most two candidates. Similarly, we use sc
π(a)
p (a), with π(a) ∈ {−1, 1}, to

denote the score of candidate a in the primary of their party. For the direct system, we

use sc(a) to denote the score of candidate a. Moreover, when we write that one of the

systems is better than the other, we mean that the utilitarian social cost of the winner

produced by the former is lower than the utilitarian social cost of the winner of the latter.

4.1 Voting under Plurality

It is relatively easy to see that the primary system can produce a winner with a higher

utilitarian social cost than the direct system, and the instance from Figure 1 is a good ex-

ample, with A = {a1, a2, a3, a4}, V = {v1, v2, v3, v−1, ..., v−k−1}, π(v1) = π(v2) = π(v3) =

π(a1) = π(a2) = 1, π(v−i) = π(a3) = π(a4) = −1, for 1 ≤ i ≤ k + 1. We let ρ(v1) = 0 and

we omit to write down the remaining positions, as they can be clearly deduced from the

annotations in Figure 1.
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Figure 1: Direct elections can be better

In the primary system, sc1p(a1) = 2, sc1p(a2) = 1, so a1 wins the primary for party 1

and sc−1p (a3) = k, sc−1p (a4) = 1 and a3 advances to the general election from party −1.

Because scg(a1, {a1, a3}) = k + 2 and scg(a3, {a1, a3}) = 2, a1 becomes the winner of the

general election. In the direct system, a2 clearly wins, as they receive k out of the k + 4

possible votes. However, C(a1) = 2+1+3k+6+9 = 3k+18 and C(a2) = 5+4+3+6 = 18.

Therefore, we consider the following, more restrictive, settings for which we also require

party separability:

• one of the parties is represented by only one candidate,

• voters and candidates are uniformly distributed,

• a particular case of the uniformly distributed scenario.

4.1.1 Primaries are not Necessarily Better if one Party has

Exactly 1 Candidate

In the setting where party separability is enforced and one of the parties is represented

by only one candidate, we are interested in evaluating whether the primary system always

produces a winner with a lower utilitarian social cost than the direct system. For this

purpose, we formulate the following conjecture, which we refute by the means of a counter-

example:
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Conjecture 1. For separable election instances, if there exists only one candidate associ-

ated to one of the parties, the winner in the primary system always has a lower utilitarian

social cost than that of the winner in the direct system.

Refutation of Conjecture 1. Consider the counter-example from Figure 2, for which V =

{v1, ..., vk+1, v−1, ..., v−k}, A = {a1, a2, a−1}, with π(a2) = π(a1) = 1, π(a−1) = −1;π(v1) =

... = π(vk+1) = 1, π(v−1) = ... = π(v−k) = −1 and ρ(a2) = 0, ρ(vk+1) = −ε, ρ(v−1) = ... =

ρ(v−k) = ε, ρ(v1) = ... = ρ(vk) = −1− ε, ρ(a1) = −1− 2ε, ρ(a−1) = 1 + 2ε:

Figure 2: Direct elections are better if one party has exactly 1 candidate

In the primary system, candidate a−1 is the only candidate from party −1, so they win

the primary. For the primary of party 1, sc1p(a1) = k, sc1p(a2) = 1, so candidate a1

wins the primary. In the general election between a1 and a−1, scg(a1, {a1, a−1}) = k +

1, scg(a−1, {a1, a−1}) = k and a1 wins the general election.

If we consider the direct election, sc(a1) = k, sc(a2) = 1 + k, sc(a−1) = 0 and a2 would be

the winner.

Lastly, let’s compare the utilitarian social costs of the two winners:

• C(a1) = kε+ 1 + ε+ k(1 + 3ε) = (4k + 1)ε+ k + 1

• C(a2) = (k + 1)ε+ k(1 + ε) = (2k + 1)ε+ k

Clearly C(a2) < C(a1), so the direct system would be better in this case.
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4.1.2 Primaries are not Necessarily Better if the Voters and

Candidates are Uniformly Distributed

Just as in the previous case, the aim of this section is to investigate whether the primary

system is always better than the direct system, if the voters and candidates are uniformly

distributed and the two parties are separable. For V = {v1, v2, ..., vn}, we say that voters

are uniformly distributed if there exists δ > 0, such that ρ(vi) = iδ, ∀i ∈ {1, 2, ..., n}.

Similarly, for A = {a1, a2, ..., am}, candidates are uniformly distributed if there exists

ε > 0, such that ρ(ai) = iε,∀i ∈ {1, 2, ...,m}. Firstly, we formulate a conjecture, which

we, once again, refute. Then, we further restrict the setting and perform a quantitative

instance-wise comparison between the utilitarian social cost of the winners in the two

systems.

Conjecture 2. For separable election instances, if the voters and candidates are uniformly

distributed, the utilitarian social cost of the winner in the primary system is lower than

that of the winner in the direct system.

Refutation of Conjecture 2. We provide a counter-example, illustrated in Figure 3, for

which V = {v1, v2, ..., v8}, A = {a1, a2, a3}, with π(a1) = π(a2) = π(v1) = ... = π(v5) =

1, π(a3) = π(v6) = π(v7) = π(v8) = −1. Because voters are uniformly distributed, we

have ρ(vi) = iδ, for some δ > 0 and for the candidates we can have ρ(a1) = 2.5δ, ρ(a2) =

5δ, ρ(a3) = 7.5δ. Clearly, we can choose ε = 2.5δ such that ρ(ai) = iε, so the candidates

are also uniformly distributed. Lastly, assume a2 / a1 / a3.

Figure 3: Direct elections are better even if voters and candidates are uniformly dis-
tributed.

In the primary system, a3 is the only candidate from party −1, so they advance to the
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general election. For the primary of party 1, sc1p(a1) = 3, sc1p(a2) = 2, so a1 wins the

primary. In the general election, scg(a1, {a1, a3}) = 5, scg(a3, {a1, a3}) = 3 and a1 becomes

the winner.

In a direct election, sc(a1) = 3, sc(a2) = 3, sc(a3) = 2 and because a2 / a1, a2 would win.

Let’s compare the utilitarian social costs of the two winners:

• C(a1) = 1.5δ + 0.5δ + 0.5δ + 1.5δ + 2.5δ + 3.5δ + 4.5δ + 5.5δ = 20δ

• C(a2) = 0 + 2δ + 4δ + 6δ + 4δ = 16δ

Clearly, C(a2) < C(a1) and again, the direct system would be better.

We further restrict this setting, so that for each candidate, there is a co-located voter.

This is a plausible scenario, as in most real-life elections, candidates are able to vote

for themselves. Formally, let V = {v1, ..., vn} be the set of voters, with v1, ..., vn1 being

affiliated with party 1 and the others with party −1 and A = {a1, ..., am} be the set of

candidates, with a1, ...am1 being affiliated with party 1 and the others with party −1.

Assume candidates and voters are uniformly distributed, with ρ(vi) = i × δ and ρ(ai) =

i× k× δ, for some δ > 0 and k ∈ N. We can also assume that candidate am would receive

at least 1 vote in the direct election (otherwise, they would not receive any votes in the

primary system either and would essentially be a null candidate).

We now perform a quantitative comparison between the two systems. We distinguish the

following two cases, depending on the parity of k:

Case 1: k is even, k = 2p

We start by presenting two straightforward observations, which greatly help us in narrow-

ing down the possible winners in the two systems.

Observation 1. A candidate ai with 1 < i < m can have at most 2p + 1 votes in the

direct system. The candidate will have 2p+ 1 votes only if ai / ai−1 and ai / ai+1.
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Proof. For the voters vj who vote for candidate ai, the following must hold: |jδ − 2piδ| ≤

pδ ⇔ −pδ ≤ jδ − 2piδ ≤ pδ ⇔ p(2i − 1) ≤ j ≤ p(2i + 1), and there are at most

(2i+ 1)p− (2i− 1)p+ 1 = 2p+ 1 votes for ai.

Observation 2. In the direct system, the first candidate, a1, located at position 2pδ will

have at least 2p+ 2 votes for p > 2. In fact, they will have exactly 3p− 1 or 3p votes.

Proof. Clearly, all the voters at position δ, 2δ, ..., 2pδ will vote for the candidate at position

2pδ. Moreover, if p > 2, voters at positions (2p + 1)δ and (2p + 2)δ will also vote for

candidate a1, because d(a1, v2p+1) = (2p + 1)δ − 2pδ < d(a1, v2p+2) = (2p + 2)δ − 2pδ =

2δ < (2p − 2)δ = 4pδ − (2p + 2)δ = d(a2, v2p+2) < d(a2, v2p+1). The same argument can

be used to show that, in fact, voters v2p+1, ..., v3p−1 will surely vote for a1, while the vote

of v3p, with d(a1, v3p) = 3pδ − 2pδ = δ = 4pδ − 3pδ = d(a2, v3p), will go to either a1 or

a2, depending on the tie-breaking rule.

From Observations 1 and 2, it follows that the winner in the direct system would either

be the first candidate, a1, or the last candidate, am.

Let’s now analyse the primary system. Clearly, Observation 2 still holds for candidate a1

for both the primary and the general election, should a1 be the primary winner. Observa-

tion 1 also holds for candidates a2, ..., am1−1, participating in the primary, so the winner

of the primary for party 1 can only be a1 or am1 . However, candidate am1 can have at

most 3p + 1 votes and it can have as few as p − 1 votes. A more tedious case analysis is

now required, depending on the number of votes am1 receives in their party’s primary.

1. am1 has 3p+ 1 votes. This only happens when ρ(am1+1) = ρ(vn1) and am1 / am1−1.

In this case, am1 would win the primary for party 1.

i. If n > 2mp + 2p candidate am would get at least p − 1 + (2mp + 2p − 2mp +

1) + 1 = 3p + 1 votes and would win the primary for party −1 and would also

win against candidate a1 in the direct system. In the general election between

am and am1 , scg(am1 , {am1 , am}) ≤ n1 − 2p + mp −m1p and scg(am, {am1 , am}) ≥
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mp − m1p − 1 + n − 2mp + 1. scg(am, {am1 , am}) − scg(am1 , {am1 , am}) ≥ n −

2mp − n1 + 2p > 0 ⇔ n > n1 + 2p(m − 1). In this case the winner in both

systems would be am and there would be no difference between them. More-

over, if am / am1 , for n = n1 + 2mp − 2p or n = n1 + 2mp − 2p − 1 or n =

n1 + 2mp− 2p− 2 the winner would still be am. If am1 / am and n = n1 + 2mp− 2p,

then scg(am, {am1 , am}) = scg(am1 , {am1 , am}) and am1 would win the general elec-

tion. But in this particular case C(am1)−C(am) = 2pδ(m−m1) and so the primary

system would produce a winner with a higher utilitarian social cost - an example

is shown in Figure 4. However, if n ≤ n1 + 2p(m − 1) − 1 = 2mp + 2m1p − 1,

then the winner in the primary system would be am1 . But C(am1) = δ(2m1p −

1 + ... + 0 + 1 + 2 + ... + n − 2m1p) = δ
(
(2m1p−1)2m1p

2 + (n−2m1p)(n−2m1p+1)
2

)
and

C(am) = δ(2mp−1+...+0+1+...+n−2mp) = δ
(
(2mp−1)2mp

2 + (n−2mp)(n−2mp+1)
2

)
.

C(am)−C(am1) = 2δ(m−m1)
[
2p2(m+m1)− p− np

]
≥ 0, because clearly m > m1

and n ≤ 2mp + 2m1p − 1 ⇔ np ≤ 2p2(m + m1) − p ⇔ 2p2(m + m1) − np − p ≥ 0,

so in this case the winner in the primary system would not have a higher utilitarian

social cost than the winner in the direct system.

ii. For n = 2mp + 2p, n = 2mp + 2p − 1, n = 2mp + 2p − 2, am would win the

primary for party −1, but they could lose against a1 in the direct election. am

would only win against am1 in the general election if m1 = 1, because for m1 > 1 we

would need n ≥ 2mp+2m1p−2 > 2mp+2p. If m1 > 1, C(am)−C(am1) = 2pδ(m−

m1)(2mp+ 2m1p−n−1) > 0, because m > m1 and n ≤ 2mp+ 2p < 2mp+ 2m1p⇒

2mp+ 2m1p−n− 1 ≥ 0 and C(a1)−C(am1) = 2pδ(1−m1)(2pm1 + 2p− 1−n) > 0,

because 0 < 1 − m1 and n > 2pm ≥ 2pm1 + 2p ⇒ 2pm1 + 2p − n − 1 < 0. So

am1 has a lower utilitarian social cost than the possible winners in the direct sys-

tem. For m1 = 1, if n = 2mp + 2p, then C(a1) < C(am) and the primary system

would produce a worse outcome only if a1 would be the winner in the direct system

and am would be the winner in the primary system. However, this is not possible,

because for am to win the general election, it must hold that am / a1 and in the

direct system am would have at least as many votes as a1 and would also win in

case of a tie, so they would also win in the direct system. If n = 2mp + 2p − 1,
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then C(a1) = C(am) and the two systems produce winners with the same utilitarian

social cost. If n = 2mp + 2p − 2, C(am) < C(a1) and the primary system would

produce a worse outcome only if am were the winner in the direct system and a1 the

winner in the primary system. Again, this is not possible, because a1 would only

win the general election if a1 /am, but then, because a1 would have at least as many

votes as am in the direct system, they would also win the direct election.

iii. If n ≤ 2mp + 2p − 3, candidate am would lose against candidate a1 in the

direct system. If n > 2mp+ p+ 2, am would still win the primary of party −1, as it

would have at least 2p + 2 votes. In the general election scg(am1 , {am1 , am}) −

scg(am, {am1 , am}) ≥ 2pm1 + mp − pm1 − 1 − (mp − pm1 + 1 + n − 2mp) =

2mp + 2m1p − n − 2 ≥ 2mp + 2m1p − 2mp − 2p + 3 − 2 = 2m1p − 2p + 1 > 0

so am1 would win the general election. C(a1) = δ(2p − 1 + ... + 1 + 0 + 1 + ... +

n − 2p) = δ
(
(2p−1)2p

2 + (n−2p)(n−2p+1)
2

)
and C(a1) − C(am1) = δ(8p2 − 4p − 4np +

4m1p + 4nm1p − 8m1
2p2) = 4pδ

[
2p(1−m2

1)− (1−m1)− n(1−m1)
]

= 4pδ(1 −

m1)(2p + 2m1p − n − 1) > 0. because 1 −m1 ≤ 0 and n > 2mp ≥ 2m1p + 2p ⇐

2m1p + 2p − n − 1 < −1 < 0, so C(a1) ≥ C(am1) and the primary system would

again produce a better result. Lastly, if n ≤ 2mp+ p+ 2, assume the winner of the

primary for party −1 is ai, with m1 < i ≤ m. If am1 were to win in the general

election against ai, we have already shown that C(a1) > C(am1) (this is because it

continues to hold that n ≥ 2m1p + 2p), so we are only interested in the case where

ai wins in the general election. C(ai) = δ(2ip− 1 + ...+ 1 + 0 + 1 + ...+ n− 2ip) =

δ
(
(2ip−1)2ip

2 + (n−2ip)(n−2ip+1)
2

)
and C(a1)−C(ai) = δ

2(4ip+4nip−8i2p2+8p2−4p−

4np) = 2pδ
[
2p(1− i)(1 + i)− n(1− i)− (1− i)

]
= 2pδ(1− i)(2p+ 2pi−n− 1) > 0,

because 1− i < 0 and for m1 > 1, n ≥ 2ip+2m1p−2 ≥ 2ip+4p−2 > 2ip+2p−1⇐

2p + 2ip − n − 1 < 0 (the inequality n ≥ 2ip + 2m1p − 2 follows from the fact that

for ai to win against am1 , it must hold that n ≥ 2ip + 2m1p − 2). If m1 = 1, for

n = 2pi+ 2p− 2,m = i+ 1 and ai / a1, ai would win in the general election against

a1, but C(ai)− C(a1) = 2pδ(i− 1) and the primary system would produce a worse

outcome - an example is shown in Figure 5.
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2. am1 has 3p votes. This happens when ρ(am1+1) = ρ(vn1) and am1−1 / am1 or

ρ(am1+1) = ρ(vn1+1) and am1 / am1−1.

i. If a1 also has 3p votes, i.e. a1 / a2, and a1 / am1 then a1 wins the primary

for party 1. If n > 2mp + 2p, am would win the primary for party −1, the general

election against a1 and they would also win in a direct election, so the two systems

produce the same winner. For n = 2mp + 2p, n = 2mp + 2p − 1, n = 2mp + 2p − 2

the analysis is identical to the one before, for m1 = 1, for which we have shown that

the primary system cannot produce a worse outcome. If n ≤ 2mp+ 2p−3, a1 would

win in the direct election. Moreover, if ai were the primary winner of party −1,

m1 < i ≤ m, then for n = 2pi + 2p − 2, m = 2pi + 2p and ai / a1, ai would win in

the general election against a1 and C(ai)− C(a1) = 2pδ(i− 1), resulting in a worse

outcome. For n > 2pi + 2p − 2, C(a1) − C(ai) = 2pδ(1 − i)(2p + 2pi − n − 1) > 0,

because 0 < 1− i and n ≥ 2pi+ 2p− 1⇐ 0 ≥ 2pi+ 2p−n− 1. If am1 / a1, then am1

would win the primary for party 1 and the analysis is identical to the previous case.

ii. If a1 has less than 3p votes, then candidate am1 would win the primary for

party 1 and the analysis is identical to 1.

3. am1 has 3p− 1 votes. This happens when ρ(am1+1) = ρ(vn1+1) and am1−1 / am1 or

ρ(am1+1) = ρ(vn1+2) and am1 / am1−1.

If a1 has 3p votes or a1 has 3p− 1 votes, i.e. a2 / a1 and a1 / am1 , then a1 wins the

primary for party 1 and the analysis is the same as 2.i. Similarly, if a1 has 3p − 1

votes and am1 / a1 the analysis is identical to 1.

4. am1 has less than 3p− 1 votes. Then a1 would win the primary for party −1.

i. If n > 2mp+ 2p+ 2, candidate am wins in both systems.

ii. If n = 2mp+ 2p+ 2 or n = 2mp+ 2p+ 1 or n = 2mp+ 2p, and C(a1)−C(ai) =

2pδ(1−i)(2p+2pi−n−1) > 0, because 1−i < 0 and 2p+2pi−n−1 ≤ 2pi−2pm−1 <
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0,∀i.m1 < i ≤ m. C(am) − C(ai) = 2pδ(m − i)(2pm + 2pi − 1 − n) > 0, because

m− i > 0 and 2pm+ 2pi−1−n ≥ 2pm+ 2pi−1−2pm−2p−2 > 0, ∀i.m1 < i ≤ m.

So, the primary system does not produce a winner with a higher utilitarian social

cost.

iii. If n = 2mp + 2p − 1, clearly C(a1) = C(am), so the winner in the direct

system does not matter and we are only interested in the possibility of candidate ai,

m1 < i < m winning in the primary system. C(a1)− C(ai) = 2pδ(1− i)(2p+ 2pi−

n− 1) = 2pδ(1− i)(2pi− 2pm) > 0, because 1− i < 0 and i < m⇒ 2pi− 2pm < 0.

So, the primary system does not produce a winner with a higher utilitarian social

cost.

iv. If n = 2mp + 2p − 2, C(a1) − C(ai) = 2pδ(1 − i)(2p + 2pi − n − 1) =

2pδ(1 − i)(2pi − pm + 1) < 0,∀i,m1 < i < m. For i = m, candidate am must

win in both the primary and the general election against a1. This only happens if

am / a1 and am / am−1, but in this case am would also win in the direct system.

C(am) − C(ai) = 2pδ(m − i)(2pm + 2pi − 1 − n) = 2pδ(m − i)(2pi − 2p + 1) >

0,∀i,m1 < i ≤ m. Again, the primary system does not produce a winner with a

higher utilitarian social cost.

v. If n ≤ 2mp + 2p − 3, am would lose against candidate a1 in the direct sys-

tem and in a possible general election of the primary system. Suppose candidate

ai, m1 < i < m wins the primary for party −1 and the general election against a1,

then n ≥ 2pi + 2p − 2. C(a1) − C(ai) = 2pδ(1 − i)(2p + 2pi − n − 1) > 0, unless

n = 2pi + 2p − 2. However, for n = 2pi + 2p − 2,m = i + 1 such that ai wins the

primary for party −1 and the general election against a1, with ai/a1, C(ai) > C(a1),

resulting in a winner with a higher utilitarian social cost than the direct system win-

ner. Note that in order for ai to win the primary for party −1, candidate am1+1

must have at most as many votes as ai in the primary. This is only influenced by

the position of voter vn1 and we would need to require that ρ(vn1) ≥ 2pm1 + 3p as

well as possibly enforce that ai wins in case of a tie against ai−1 or am1+1.
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Case 2: k is odd, k = 2p+ 1.

We formulate similar observations to those for the even k case.

Observation 3. A candidate ai, with 1 < i < m will have exactly 2p+1 votes in the direct

system.

Proof. A voter vj will vote for ai only if
∣∣jδ − (2p+ 1)iδ

∣∣ ≤ pδ ⇔ −pδ ≤ jδ − 2piδ − iδ ≤

pδ ⇔ 2pi+i−p ≤ j 2pi+i+p, and there are at most 2pi+i+p−2pi−i+p+1 = 2p+1 votes

for ai. But because d(ai, v2pi−p+i) = δ(2pi+ i− 2pi+ p− i) = pδ and d(ai−1, v2pi−p+i) =

δ(2pi−p+i−2pi+2p−i+1) = (p+1)δ > pδ and similarly d(ai, v2pi+p+i) < d(ai+1, v2pi+p+i),

ai must have exactly 2p+ 1 votes.

Observation 4. In the direct system, candidate a1, located at position (2p+ 1)δ will have

exactly 3p+ 1 votes.

Proof. Voters at positions δ, 2δ, ..., (2p+ 1)δ will clearly vote for the candidate at position

(2p+ 1)δ. Because d(a1, v3p+1) = (3p+ 1)δ− (2p+ 1)δ = pδ < (p+ 1)δ = (4p+ 2)δ− (3p+

1)δ = d(a2, v3p+1), voters v2p+2, ..., v3p+1 will also vote for a1 in the direct system. So a1

will have precisely 3p+ 1 votes.

From Observation 3 and 4, it follows that the winner in the direct system will either be the

first candidate, a1, or the last candidate am. Similarly to the previous case, Observation

3 continues to hold for candidates a2, ..., am1−1 in the primary of party 1, so the winner of

the primary can only be a1 or am1 .

The analysis for this case is very similar to the even k case and we obtain the following

instances for which the primary system produces a winner with a higher utilitarian social

cost than the winner in the direct system:

1. m1 = 1, n = (2p + 1)m − 2, am−1 / a1,m even and am−1 winning the primary

for party −1. For this to happen, we require that ρ(vn1) ≥ (3p + 1)δ (this en-

sures that candidate a2 can get at most 2p + 1 votes) and ∀i, 1 < i < m − 1, if
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sc−1p (ai) = 2p + 1, then am−1 / ai. This is because in the primary for party −1,

am−1 will get exactly 2p + 1 votes and they need to win in case of ties with other

candidates. So am−1 wins the primary for party −1 and in the general election

against a1, scg(a1, {a1, am−1}) = (2p+1)m
2 − 1 = 2pm+m−2

2 = 4pm+2m−4−2pm−m+2
2 =

2n−(2pm+m−2)
2 = n− 2pm+m−2

2 = scg(am−1, {a1, am−1}) and because am−1 / a1, am−1

would win the in general election. Clearly, a1 would win in the direct election, as it

would have 3p+ 1 votes, and no other candidate would have more than 2p+ 1 votes.

Lastly, substituting (2p+1) = k,C(a1) = δ(k−1+ ....+1+0+1+ ...+mk−2−k) =

δ
(
(k−1)k

2 + (mk−k−2)(mk−k−1)
2

)
, C(am−1) = δ[k(m−1)−1+...+1+0+1+...+(k−2)] =

δ
(
(km−k−1)(km−k)

2 + (k−2)(k−1)
2

)
and C(am−1) − C(a1) = δk(m − 2). Note that we

require m to be even, because otherwise, in the general election, candidate am−1

would have 1 vote less than a1 and could not beat them.

2. ρ(vn1) = ρ(am1+1)⇔ n1 = km1+k, k = 2p+1, n = n1+km−k = km+km1, m1 and

m have the same parity, am1 /am. In this case, am clearly wins in the direct election,

as well as the primary for party −1. Candidate am1 wins the primary for party 1,

because a1 has 3p+1 votes and am1 has 3p+2 votes. In the general election, am and

am1 will have the same number of votes and because am1 /am, am1 would win in the

primary system. Note that if m and m1 had different parities, am would have one

more vote than am1 in the general election and would win. The parity restriction

also ensures that am1 gets the vote from vm1+m
2

due to the tie-breaking rule, because

d(am, vm1+m
2

) = d(am1 , vm1+m
2

). C(am) = δ(mk− 1 + ...+ 1 + 0 + 1 + ...+n−mk) =

δ
(
(mk−1)mk

2 + (n−mk)(n−mk+1)
2

)
, C(am1) = δ(m1k−1+...+1+0+1+...+n−m1k) =

δ
(
(m1k−1)m1k

2 = (n−m1k)(n−m1k+1)
2

)
and C(am1)−C(am) = δk(m1−m)(km1+km−

n− 1) = δk(m−m1).

3. ρ(vn1+1) = ρ(am1+1) ⇔ n1 = km1 + k − 1, n = n1 + km − k + 1,m1 and m have

the same parity, am1 / a1, am1 / am. The condition ρ(vn1+1) = ρ(am1+1) implies that

candidates a1 and am1 both receive 3p + 1 votes in the primary for party 1, and

the condition am1 / a1 ensures that am1 wins the primary. Moreover, we require m

and m1 to have the same parity so that in the general election they have the same

number of votes and, the tie-breaking rule will make am1 win against am in the
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general election. Similarly, as above, we obtain C(am1)− C(am) = δk(m−m1).

In our quantitative analysis, we have distinguished two main cases depending on the

parity of k. We have showed that, no matter whether k is even or odd, election instances

where the direct system is better than the primary system still exist. However, such cases

arise rather sparsely. We now present two examples of instances where the direct system

outperforms the primary one.

For the example in Figure 4 we have the following setting: δ = 1, k = 8, p = 4, n1 =

24,m1 = 2,m = 4, n = 48. The voters and candidates from party 1 are coloured in

yellow, while the voters and candidates from party −1 are coloured in green. We also

require a2 / a4, a2 / a1 and note that at v24 and a3 are located at the same position, with

π(v24) = 1, π(a3) = −1.

Figure 4: Example where the primary system produces a worse outcome for an even k
and m1 > 1

In the direct system a4 clearly wins. a2 wins the primary for party 1, because sc1p(a2) = 13,

while sc1p(a1) = 11 and a4 wins the primary for party −1. In the general election between

a2 and a4, although scg(a2, {a2, a4}) = scg(a4, {a2, a4}) = 24, a2 ends up winning, due to

the tie-breaking rule. But C(a4) = 632 and C(a2) = 648.

Similarly to the previous example, in Figure 5, we have δ = 1, k = 8, p = 4, n1 = 16,m1 =

1,m = 4, n = 30 and the voters and candidates are coloured as before. We require a3 / a1.

Figure 5: Example where the primary system produces a worse outcome for an even k
and m1 = 1
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a1 wins in the direct election, because they get at least 11 votes and no other candidate

can get more than 9 votes and they are also uncontested in the primary for party 1.

The primary for party −1 is won by a3, because sc−1p (a3) ≥ 7, while sc−1p (a2) ≤ 4 and

sc−1p (a4) ≤ 4. In the general election, scg(a1, {a1, a3} = scg(a3, {a1, a3}) = 15 and the

tie-breaking rule makes a3 the winner. However, C(a1) = 281 and C(a3) = 297.

4.2 Condorcet Winners

The results from this section apply to all Condorcet-consistent voting rules (e.g. Copeland,

maximin), due to the median voter theorem ([Black, 1948]), which states that, if voters and

candidates can be positioned in one dimension and voters’ preferences are only determined

by their proximity to candidates, the outcome of any Condorcet-consistent voting rule is

the most preferred candidate by the median voter. It is worth noting that, in the one

dimensional setting, a Condorcet winner is guaranteed to exist.

As before, we focus on the uniformly distributed voters and candidates case. Let V =

{v1, ..., vn} be the set of voters, with v1, ..., vn1 being affiliated with party 1 and the others

with party −1 and A = {a1, ..., am} be the set of candidates, with a1, ...am1 being affil-

iated with party 1 and the others with party −1. Candidates and voters are uniformly

distributed, with ρ(vi) = i × δ and ρ(ai) = i × k × δ, for some δ > 0 and k ∈ N. The

most preferred candidate by the median voter is declared the winner. We formulate the

following conjecture and the aim of our analysis is to verify it:

Conjecture 3. For separable election instances, if the voters and candidates are uni-

formly distributed, for any Condorcet-consistent voting rule, the utilitarian social cost of

the winner in the primary system is lower than that of the winner in the direct system.

Refutation of Conjecture 3. We not only refute the conjecture, but also conduct a com-

plete analysis of the possible outcomes in the two systems using Condorcet-consitent voting

rules.

If n is odd, n = 2n′+1, the median voter is vn′+1. Let’s observe that the candidate closer to
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the median voter is optimal in terms of utilitarian social cost. To see this, assume ai is the

closest candidate to vn′+1. Without loss of generality, let ρ(ai) = ρ(vn′+p)⇔ ki = n′+1+p,

with p ≥ 1 and let’s consider any other candidate aj , with d(ai, vn′+1) ≤ d(aj , vn′+1).

Moreover, we can assume that ρ(aj) = ρ(vn′+p+x), for x > 0 - otherwise, if candidate aj

were situated to the left of vn′+1, we could simply consider the candidate located at the

position corresponding to the the symmetric of ρ(aj) with respect to ρ(vn′+1), who will

have the same utilitarian social cost as aj . C(ai) = δ(n′ + p− 1 + ...+ 1 + 0 + 1...+ 2n′ +

1− n′− p) = δ
(
(n′+p−1)(n′+p)

2 + (n′+1−p)(n′+2−p)
2

)
and C(aj) = δ(n′+ p+ x− 1 + ...+ 1 +

0 + 1 + ... + 2n′ + 1 − n′ − p − x) = δ
(
(n′+p+x−1)(n′+p+x)

2 + (n′−p−x+1)(n′−p−x+2)
2

)
, with

C(aj) − C(ai) = δ(x2 + 2px − 2x) > 0, because 2px ≥ 2x and x > 0. This means that

unless the primary winner produces the same winner as the direct system, the winner in

the primary system will always have a greater utilitarian social cost.

For an even n, n = 2n′, there will be 2 median voters, vn′ , vn′+1 and the winning candidate

could depend on the tie-breaking rule. However, the only time when the optimal candidate

in terms of utilitarian social cost does not win in the direct system is when d(ai, vn′) =

d(ai+1, vn′+1) + 1 and ai / ai+1 or d(ai, vn′) + 1 = d(ai+1, vn′+1) and ai+1 / ai. This is

because in both instances, ai and ai+1, respectively, will have the same number of votes as

ai+1 and ai, respectively, but will win because of the tie-breaking rule. We’ll only consider

the case when d(ai, vn′) = d(ai+1, vn′+1) + 1 and ai / ai+1 to show that ai does indeed

have a higher utilitarian social cost than ai+1. Note that this implies that 2n′ = 2ki+ k.

C(ai) = δ(ki−1+...+1+0+1+...+2n′−ki) = δ
(
(ki−1)ki

2 + (2n′−ki)(2n′−ki+1)
2

)
, C(ai+1) =

δ((ki+ k− 1 + ...+ 1 + 0 + ...+ 2n′ − ki− k) = δ
(
(ki+k−1)(ki+k)

2 + (2n′−ki−k)(2n′−ki−k+1)
2

)
and C(ai)− C(ai+1) = δ(2n′k + k − k2 − 2k2i) = δ(2k2i+ k2 + k − k2 − 2k2i) = δk. The

existence of such instances means that the primary system may produce a better outcome.

However, these are limited to ai+1 and ai, respectively, winning in the primary system. If

we restrict our attention to the case considered before, when d(ai, vn′) = d(ai+1, vn′+1)+1

and ai / ai+1, then this automatically implies that π(ai+1) = −1, as otherwise ai+1 could

never be the winner of the primary. Moreover, we need the median voter/s of party −1 to

prefer ai+1 more than any other candidate and we also need ai to not win the primary of

party 1. Note that, although possible, election instances of this type are not necessarily
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expected, because for larger n, n1 would need to be very small, in order for ai+1 to be the

closest to the median voter of party −1. Lastly, we don’t impose π(ai) = −1, but, there is

precisely one such election instance with π(ai) = 1, for a fixed δ shown in Figure 6, which

is extremely restrictive.

To see that the primary system can produce a winner with a lower utilitarian social cost

than that of the winner in the direct system, irrespective of the party affiliation of the

Condorcet winner in the direct system, we begin with the example from Figure 6, where

the Condorcet winner in a direct election is affiliated to party 1, and δ = 1, n = 10, n1 =

4, k = 2,m1 = 2,m = 5 and let a2 / a3, a3 / a4, a1 / a2.

Figure 6: The primary system produces a better outcome with Condorcet winners and
π(ai) = 1

In the direct system, the median voters are v5 and v6, with a2 winning because a2 / a3.

In the primary system, a1 wins the primary for party 1, a3 wins the primary for party −1

and the general election is won by a3. C(a2) = 27, C(a3) = 25.

We continue with an example, shown in Figure 7, where the Condorcet winner in the direct

system is affiliated to party −1 and the primary system still produces a better outcome.

We have: δ = 1, n = 30, n1 = 11,m1 = 1,m = 5, i = 2, k = 6. Let’s also assume that

a2 / a3 and a3 / a4.

Figure 7: The primary system produces a better outcome with Condorcet winners and
π(ai) = −1
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The median voters in the direct system are v15 and v16 and because d(v15, a2) = d(v15, a3)

and a2 /a3, a2 is the Condorcet winner and hence, the winner in the direct system. In the

primary system, a1 clearly wins the primary for party 1. For party −1, v21 is the median

voter, with d(v21, a3) = d(v21, a4). Because a3 / a4, a3 wins the primary for party −1 and

they also clearly win in the general election against a1. In this case, C(a2) = 237 and

C(a3) = 231 and the primary produces a better outcome.

4.2.1 Symmetric Case

We can see that in the cases where the Condorcet winner in the direct system does not

correspond to the optimal candidate in terms of their utilitarian social cost, the last

candidate is somewhat at a disadvantage, because there are fewer voters to their right,

compared to other candidates and, more specifically, compared to the number of voters

to the left of the first candidate. Therefore, it is worth focusing our attention on the case

when the number of voters to the left of a1 is the same as the number of voters to the

right on am, if we think about the voters and candidates’ positions on the line. Formally,

we require ρ(am) + (k − 1) = ρ(vn)⇔ n = mk + k − 1. It turns out that in this case, the

direct system should always be chosen over the primary system.

Theorem 1. For separable instances, if voters and candidates are uniformly distributed,

the primary system will never produce a winner with a lower utilitarian social cost than

that of the winner in the direct system.

Proof. We distinguish the following two cases, depending on the parity of m:

1. m is odd, m = 2m′ + 1 ⇒ n = 2m′k + 2k − 1. The median voter in the direct

system is then vm′k+k and ρ(vm′k+k) = δ(m′k + k) = δk(m′ + 1) = ρ(am′+1), so

am′+1 would be the Condorcet winner in the direct system. Moreover, am′+1 is the

optimal candidate in terms of utilitarian social cost, so the primary system could at

most produce a winner with the same utilitarian social cost as am′+1 and it is never

better than the direct system.
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2. m is even, m = 2m′ ⇒ n = 2m′k + k − 1.

i. If k is even, k = 2p, the median voter in the direct system is vp(m+1) and

ρ(vp(m+1)) = δp(m + 1) = δp(2m′ + 1) = δ(2pm′ + p) = δ(km′ + p). In this

case, there are two candidates who could be the Condorcet winner, depending on

the tie-breaking rule, namely am′ or am′+1 d(vp(m+1), am′) = δ(km′ + p − km′) =

δp = δ(2p − p) = δ(k − p) = δ(km′ + k − km′ − p) = d(vp(m+1), am′+1). How-

ever, the following hold: C(am′) = δ(m′k − 1 + ... + 1 + 0 + 1 + ... + n − m′k) =

δ
(
(m′k−1)m′k

2 + (n−m′k)(n−m′k+1)
2

)
and C(am′+1) = δ(m′k+ k− 1 + ...+ 1 + 0 + 1 +

... + n−m′k − k) = δ
(
(m′k+k−1)(m′k+k)

2 + (n−m′k−k)(n−m′k−k+1)
2

)
with C(am′+1)−

C(am′) = δ(2m′k2 − kn + k2 − k) = δ[8m′p2 − 2p(4m′p + 2p − 1) + 4p2 − 2p] =

δ(8m′p2 − 8m′p2 − 4p2 + 2p+ 4p2 − 2p) = 0, so C(am′) = C(am′+1) and the winner

in the direct system would be an optimal candidate.

ii. If k is odd, k = 2p + 1, there are two median voters in the direct system:

vm′k+p, vm′k+p+1 and there are two possible Condorcet winners, depending on the

tie-breaking rule, am′ and am′+1, with d(vm′k+p, am′) = δ(m′k + p −m′k) = δp =

δ(m′k + 2p + 1 −m′k − p − 1) = d(vm′k+p+1, am′+1). Using a similar approach as

before, we obtain C(am′+1)−C(am′) = δ(2m′k2 − kn+ k2 − k) = δ{2m′(2p+ 1)2 −

(2p+1)[2m′(2p+1)+2p+1−1]+(2p+1)2−2p−1} = δ(8m′p2+8pm′+2m′−8m′p2−

4pm′ − 4p2 − 4pm′ − 2m′ − 2p+ 4p2 + 4p+ 1− 2p− 1) = 0, so C(am′) = C(am′+1)

and the winner in the direct system would once again be an optimal candidate.

Remark 1. The only case when the primary system would produce a winner with the same

utilitarian social cost as that of the winner in the direct system is when the median voter in

the primaries is closest to the socially optimal candidate. This happens in very restricted

cases, when the number of voters from one party is disproportionately small to the number

of voters from the other party. We conclude that the primary system is strictly worse than

the direct system in most of the cases, with very few instances when the winners in the

two systems have the same utilitarian social cost and that it is never better than the direct
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system.

4.3 Single Transferable Vote

Again, we only consider the uniformly distributed voters and candidates case. It is useful

to note that STV may fail to select the Condorcet winner even in the direct system. Taking

into account Observations 2 and 4 from Section 4.1.2, we know that few voters will give

their point to the Condorcet winner in the direct system. Moreover, if the Condorcet

winner wins in pairwise elections without being preferred by the tie-breaking rule, they

could be the candidate with the lowest score and be one of the first eliminated candidates

in both the direct and the primary systems. Similarly, even if the Condorcet winner is

preferred over any other candidate, according to the tie-breaking rule, they can still be

eliminated. This shows that STV heavily relies on the tie-breaking rule in one dimension

and a quantitative analysis is almost impossible for a large number of candidates, for any

of the two types of systems.

In our next example, we show that the Condorcet winner may be eliminated by STV, even

if they are the top candidate in the tie-breaking rule. For the example shown in Figure 8,

with δ = 1, n = 25, k = 6. Let a2/a1/a3/a4. Clearly a2 is the Condorcet winner, as they are

the closest to the median voter, v13. Using STV, initially, sc(a1) = 8, sc(a2) = 7, sc(a3) = 6

and sc(a4) = 4, so a4 is eliminated. The process continues, as no candidate has at least

13 points, with the following, updated, scores: sc(a1) = 8, sc(a2) = 7, sc(a3) = 10. As

a result, a2 is eliminated, even though they are the Condorcet winner and also the most

preferred candidate, according to the tie-breaking rule.

Figure 8: The Condorcet winner may be eliminated by STV
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4.4 Average-case Distortion

In this section, we compare the distortion of the seven voting rules described in Section

3: plurality, anti-plurality, plurality with run-off, Borda, Harmonic Borda, Copeland and

STV under the two systems. Moreover, we consider two classes of instances. Our analysis

differs from that of Borodin et al. [2019], who focus on computing the average distortion

over 1000 election instances for various voting rules. As a consequence, our emphasis is

on comparing which of the two systems produces a better outcome. While we also look at

the margins of the difference between the distortion of the mentioned voting rules under

the two systems, this is not our main objective. Moreover, in their simulations, Borodin

et al. [2019] generate the positions of voters and candidates at uniformly random locations,

while we, apart from the case where voters and candidates are uniformly distributed, as

per our theoretical analysis, also consider more general settings, by taking samples of a

given size to obtain the voters and candidates’ positions.

For the first class, we investigate both instances where we enforce party separability and

instances where we do not, which we refer to as ”random” (we note that the word ”random”

might be confusing, however, since it is being used by Borodin et al. [2019] with the same

meaning, for consistency, we continue with the same notation) in one, three and five

dimensions.

For all of the experiments related to the first class, we choose a random integer n between

200 and 1000, representing the number of voters and a random value for m, between

bn/10c−bn/100c∗2 and bn/10c+bn/100c∗2, representing the number of candidates. We

then set the number of voters and candidates affiliated with party 1, ranging from 30%

to 70%, in increments of 5%, of the total number of voters and candidates, respectively

and for each such instance, we randomly generate the tie-breaking rule. We apply the

aforementioned voting rules for both the primary and the direct system and compute the

utilitarian social cost of the resulting winners.

To achieve party separability, we follow the same approach as Borodin et al. [2019] by

firstly sorting the voters based on the value of their last coordinate. Next, we set a value
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for n1 = p ∗ n, p ∈ {0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7}, representing the number of

voters from party 1. We associate the first n1 sorted voters to party 1 and the remaining

ones to party −1. This ensures that the voters are separable. Lastly, we set a value for

m1 = p ∗ m, p ∈ {0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7}, representing the number of

candidates from party 1, and we randomly generate m1 points with the last coordinate

at most equal to the last coordinate of the last voter for party 1. Similarly, we randomly

generate m−m1 candidates associated to party −1.

For the second class, we try to simulate real-life elections, where, for each party, voters

are likely to be concentrated around candidates. For this reason, we use a Gaussian

distribution in one and two dimensions. We start by having the two distribution close to

each other and we increase the distance between the two distributions, until the instances

are almost separable. We call this ”polarization”, as the further the two distributions get

from each other, the more likely voters will vote for a candidate from the same party, even

in the general election.

For these experiments, the two parties have the same number of voters, a random integer

between 100 and 500, as well as the same number of candidates, a random integer between

bn/10c−bn/100c ∗ 2 and bn/10c+ bn/100c ∗ 2 so that no party is disadvantaged when the

distributions are further away from each other.

4.4.1 1 Dimension

We note that the results for anti-plurality do no offer any real insights, as voters are

asked to ”penalise” their least preferred candidate, and when voters and candidates can

be positioned on a line, the first and the last candidate will be the only ones to receive

negative scores. As a result, the winner determined by the anti-plurality voting rule is

very much dependent on the tie-breaking rule. However, for completeness, we do include

the results for anti-plurality.

The findings from Table 1 show the number of election instances for which one of the

systems produced a winner with a lower utilitarian social cost (”PB” stands for ”Primary
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is better” and ”DB” stands for ”Direct is better), or the two systems produce the same

winner (”ND” stands for ”No difference”), for uniformly distributed and general, separable

and random instances (we remind the reader that in a random election instance party

separability is not enforced) in one dimension. We use ”general” to highlight that we no

longer require the voters and candidates to be uniformly distributed. Rather, we randomly

generate n voters and m candidates within the range (0, 5n). For uniformly distributed

voters and candidates, we use the most restrictive setting, where for each candidate there

is a co-located voter, as most of our theoretical analysis focuses on that case.

Uniformly distributed General
Separable Random Separable Random

PB DB ND PB DB ND PB DB ND PB DB ND

Plurality 184 0 22 204 0 2 154 8 62 133 62 29

Anti-plurality 192 8 6 123 79 4 114 53 57 147 73 4

Plurality Run-off 86 80 40 144 38 24 82 62 80 142 41 41

Borda 0 206 0 97 10 99 0 224 0 88 58 78

Harmonic Borda 0 203 3 24 115 68 85 24 115 132 49 43

Copeland 0 206 0 0 17 189 0 224 0 0 81 143

STV 46 105 55 123 54 29 43 108 73 132 78 15

Table 1: Comparison of the two systems in one dimension, in terms of the utilitarian social
cost of the winner produced

Let’s begin by noticing that, although in our quantitative instance-wise comparison be-

tween the two systems, for the uniformly distributed case under plurality voting, we showed

that there are several instances where the direct system is better, in practice this is unex-

pected. On the reverse, a similar argument holds for the Copeland voting rule, which is

Condorcet-consistent: on average, the direct system is strictly better than the direct sys-

tem for separable instances, while for random instances, in most of the cases the winners

have the same utilitarian social cost. Also, the results for Borda and separable instances

are not surprising either, in fact, this enforces the results in the literature, which claim

that ”Borda is close to being Condorcet-consistent” [Saari, 1985; Gehrlein, 1987; Gehrlein

and Valognes, 2001; Gehrlein and Plassmann, 2014; Gehrlein et al., 2017].

An interesting trend can be observed when comparing Borda and Harmonic Borda for

separable and random instances. While for separable instances, the direct system is al-
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most always better, for random instances, Borda performs better in the primary system.

Harmonic Borda, however, exhibits an interesting behaviour for random instances: the

direct system appears to be better in the uniformly distributed case, while for the general

case, the primary systems outperforms the direct one. Similarly, for STV, with party sep-

arability, the direct system seems to be better, while for random instances, the primary

system becomes better. For Copeland, we must note that for random instances, the two

systems produce a different winner very rarely, for the uniformly distributed case, with

a slight increase for the general case. Lastly, plurality with run-off produces very similar

results in each of the two cases, displaying the most consistency out of the voting rules we

considered in one dimension.

Another useful metric would be looking at the margins between the utilitarian social costs

of the two winners. To obtain the following histograms, for each voting rule and for each

instance, we compute the difference between its distortion under the two systems. Figures

9-12 display the difference in distortion of uniformly distributed and general, separable

and random instances, respectively, in one dimension:

(a) Plurality (b) Plurality Run-off (c) Copeland

(d) Borda (e) Harmonic Borda (f) STV

Figure 9: Difference in distortion between the primary and direct system for separable,
uniformly distributed election instances
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(a) Plurality (b) Plurality Run-off (c) Copeland

(d) Borda (e) Harmonic Borda (f) STV

Figure 10: Difference in distortion between the primary and direct system for random,
uniformly distributed election instances

(a) Plurality (b) Plurality Run-off (c) Copeland

(d) Borda (e) Harmonic Borda (f) STV

Figure 11: Difference in distortion between the primary and direct system for separable
general one dimensional election instances

39



(a) Plurality (b) Plurality Run-off (c) Copeland

(d) Borda (e) Harmonic Borda (f) STV

Figure 12: Difference in distortion between the primary and direct system for general one
dimensional election instances

The differences are fairly varied. We observe larger margins for plurality and plurality with

run-off for all of the instances we considered, with the primary system clearly outperform-

ing the direct one under plurality, in the uniformly distributed case. On the contrary, we

notice the very small differences in random instances, for Copeland and Borda, with a

substantial increase for separable instances. It is also worth remarking that the margins

are very similar for the uniformly distributed and general cases, with differences only in

the frequency. Hence, this can be seen as another justification for considering the, seem-

ingly restrictive, case where the voters and candidates are uniformly distributed in one

dimension.

4.4.2 3 and 5 Dimensions

We now increase the dimensions of our metric space to 3 and 5, respectively. To obtain

the positions of the n voters, we randomly generate 3 and 5 samples of size n from the

range (0, 5n) for the 3 and 5 dimensions cases, respectively, and the position of voter i is

represented by the ith value from each sample. We use the same technique to position the

candidates in the metric space.
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Table 2 displays the comparison between the utilitarian social cost of the two winners,

when voters and candidates are positioned into R3 and R5, for both types of instances:

3 Dimension 5 Dimension
Separable Random Separable Random

PB DB ND PB DB ND PB DB ND PB DB ND

Plurality 106 17 102 155 41 29 111 37 77 144 32 49

Anti-plurality 130 33 62 154 65 6 151 31 43 171 44 10

Plurality Run-off 102 37 86 158 39 28 82 47 96 138 43 44

Borda 5 162 58 19 14 192 9 94 123 2 20 203

Harmonic Borda 68 71 86 141 34 50 43 86 96 69 52 104

Copeland 2 165 58 4 18 203 5 97 123 2 15 208

STV 67 99 59 135 42 48 40 83 102 90 32 103

Table 2: Comparison of the two systems in three and five dimensions, in terms of the
utilitarian social cost of the winner produced

We note that the results for 3 and 5 dimensions are very similar for each voting rule,

and they also resemble those for the general one dimensional case: voting under plurality,

anti-plurality or plurality with run-off is more suitable for the primary system, while the

direct system outperforms the primary one, if Borda or Copeland is used. Harmonic Borda

continues to perform slightly better under the primary system for random instances, while

for separable instances, the direct system seems to be more suitable. We also observe the

same trend for STV, with quite a substantial switch from the direct system to the primary

one, for separable and random instances, respectively.

We include the histograms containing the difference between the distortion of each voting

rule under the two systems in Appendix A, because of their similarity to the ones we

have already presented. However, we note that the margins generally get smaller, even for

plurality and plurality with run-off.

4.4.3 Polarization

We now aim to simulate real-life election, where candidates are likely to be concentrated

around distinguished candidates. We model this setting by using Gaussian distributions

in one and two dimensions. Initially, we start by having the means of the distributions at

41



a small distance to each other, which we then gradually increase up to the point where the

two distributions are almost separable. As a consequence, we investigate the performance

of the two systems in terms of the polarization of the voters, as for the case where the

distributions are further apart, most voters will vote for the candidate from their own

party in the general election as well. The same argument clearly does not hold when the

distributions are close to each other and the voters and candidates from the two parties

are mixed with each others.

For the one dimensional case, we define two normal distributions with means at 1 and

1 + dist, for dist ∈ {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5} representing the voters from party 1 and

−1 respectively. We then place our candidates uniformly between the first and last voter

from each party. For the results in Table 3 (because of space constraints, we use ”AP”

to refer to anti-plurality, ”PRO” to denote plurality with run-off and ”HB” for Harmonic

Borda), we compare the utilitarian social cost of the winner in the two systems, depending

on the distance between the means of the two distributions.

dist = 1 dist = 1.5 dist = 2 dist = 2.5 dist = 3
PB DB ND PB DB ND PB DB ND PB DB ND PB DB ND

Plurality 13 10 2 15 5 5 10 11 4 16 2 7 17 2 6

AP 7 12 6 6 17 2 4 19 2 13 6 6 10 7 8

PRO 13 10 2 15 5 5 10 11 4 16 2 7 17 2 6

Borda 1 23 1 1 24 0 0 25 0 0 25 0 0 25 0

HB 8 11 6 10 10 5 5 19 1 12 5 8 14 2 9

Copeland 0 24 1 0 24 1 0 25 0 0 25 0 0 25 0

STV 13 9 3 6 18 1 7 13 5 11 6 8 9 11 5

dist = 3.5 dist = 4 dist = 4.5 dist = 5
PB DB ND PB DB ND PB DB ND PB DB ND

Plurality 15 0 10 10 3 12 10 2 13 15 4 6

AP 14 3 8 15 2 8 13 6 6 12 6 7

PRO 5 5 15 3 12 10 6 8 11 3 16 6

Borda 0 25 0 0 25 0 0 25 0 0 24 1

HB 13 3 9 10 5 10 12 1 12 15 3 7

Copeland 0 25 0 0 25 0 0 25 0 0 25 0

STV 2 13 10 2 6 17 3 4 18 1 4 20

Table 3: One dimensional polarization

We extend our previous experiment to two dimensional Gaussian distributions. For

this, we set the mean vectors for party 1 and −1 to (1, 1) and (1 + dist, 1), for dist ∈
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{1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}, respectively and both covariance matrices to

1 0

0 1

. The

examples from Figure 13 display two samples of size 200, for different values of dist. We

can see as the value of dist increases, the two parties go from overlapping significantly to

almost no overlap. This means that for a value of 5 for dist, every voter is very likely to

vote for a candidate from their own party in the general election as well, which is clearly

not necessarily true for a value of 1.

(a) dist = 1 (b) dist = 3 (c) dist = 5

Figure 13: Two dimensional Gaussian distributions

Similarly to the one dimensional case, we compare the utilitarian social cost of the two

winners, under the scenarios described above, to obtain the results from Table 4:

We begin by noticing that for each voting rule, the results are very similar. Generally, the

primary system appears to be better, especially for plurality, anti-plurality, plurality with

run-off and Harmonic Borda. In contrast, both Borda and Copeland produce a better

outcome in the direct system, just as in our previous analysis. Lastly, we observe two

interesting trends. Firstly, for plurality, the number of instances where the primary system

is better remains somewhat consistent, but the number of instances where the winner is

the same increases with the distance between the distributions. Secondly, STV follows the

same behaviour, except that the direct system stars off as better, apparently at an even

higher margin. However, since this analysis is only based on 25 instances, for plurality

and STV, we perform 200 additional experiments, in both one and two dimensions, for

each value of dist ∈ {1, 3, 5} the results of which we display in Figures 14 and 15:
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dist = 1 dist = 1.5 dist = 2 dist = 2.5 dist = 3
PB DB ND PB DB ND PB DB ND PB DB ND PB DB ND

Plurality 13 5 7 16 3 6 13 4 8 17 3 5 16 2 7

AP 17 4 4 19 2 4 19 1 5 13 8 4 11 8 8

PRO 14 3 8 12 9 4 11 7 7 12 7 6 8 5 12

Borda 0 23 2 1 24 0 0 25 0 0 25 0 0 25 0

HB 15 3 7 11 8 6 12 4 9 10 6 9 11 4 10

Copeland 0 23 2 0 24 1 0 25 0 0 25 0 0 25 0

STV 10 12 3 11 10 4 6 18 1 6 18 1 7 11 7

dist = 3.5 dist = 4 dist = 4.5 dist = 5
PB DB ND PB DB ND PB DB ND PB DB ND

Plurality 12 1 12 10 1 14 12 0 13 10 1 14

AP 15 2 8 14 3 8 16 2 7 14 6 5

PRO 10 8 7 7 4 14 11 3 11 8 7 10

Borda 0 25 0 0 25 0 0 25 0 1 24 0

HB 14 3 8 12 2 11 12 4 9 7 4 14

Copeland 0 25 0 0 25 0 0 25 0 1 24 0

STV 4 9 12 8 3 14 3 7 15 5 3 17

Table 4: Two dimensional polarization

(a) Plurality (b) STV

Figure 14: Further experiments for one dimensional Gaussian distributions

(a) Plurality (b) STV

Figure 15: Further experiments for two dimensional Gaussian distributions
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The additional experiments support our previous statements about the trends of plurality

and STV. For plurality, the primary system is generally better than the direct one, espe-

cially for larger values of the distance between the means of the two distributions. As the

distance increases, the two systems produce the same winner more often and the direct

systems performs more poorly.

The behaviour of STV is even more interesting. The primary systems is more advantageous

for a value of 1 for dist. Nonetheless, when the value of dist is increased to 3, the direct

system appears to be better and finally, when the two distribution are far apart from each

other, the two systems produce the same winner in most of the cases, with the direct

system still holding a small lead against the primary one, in terms of the number of

instances where the winner has a lower utilitarian social cost than that of the winner in

the direct system.

4.4.4 Overall Results

We combine the results of all the simulations in Table 5. We note that plurality and STV

contain more instances, which resulted from the additional experiments for polarization.

Again, we conclude that plurality is best suited to the primary system and Copeland to

the direct system. Notably, although Borda and Harmonic Borda might seem similar, they

produce very different results, with Harmonic Borda, just like STV, performing approxi-

mately the same in both systems and Borda performing much better in the direct system,

as expected.

Primary is better Direct is better No difference

Plurality 2072 412 927

Anti-plurality 1414 500 297

Plurality Run-off 1115 512 584

Borda 224 1230 757

Harmonic Borda 765 731 715

Copeland 14 1268 929

STV 1136 1155 1120

Table 5: Overall results
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5 Strategic Candidacies

In this section, we perform the first analysis of strategic candidacy games for the primary

system. We continue to use the spatial model defined in Section 3, but unlike in the

previous section, candidates now also have their own preferences over the set of candidates,

A, which are determined by their proximity to other candidates. As a result, the candidates

have self-supporting preferences, i.e. for all candidates c ∈ A, c �c a,∀a ∈ A.

We will consider three types of strategic candidacy games, which we call lazy (introduced

by Obraztsova et al. [2015]), eager and keen (described by Lang et al. [2019]). In all three

games, each candidate (or player) has two available actions or strategies: 1, meaning that

the candidate wants to run in the election, or 0, for which the candidate prefers to abstain.

Formally, the strategy of player c ∈ A is denoted by sc, with sc ∈ {0, 1} and a strategy

profile is then a vector s = (sc)c∈A. The set of candidates participating in the election,

according to a strategy profile s is denoted by A(s) = {c ∈ A|sc = 1}. For each strategy

profile, there will be a winner, denoted by w(s) ∈ A(s). We also use w1
p(s) and w−1p (s), to

denote the winners in the primaries of parties 1 and −1, respectively.

We remind the reader of the notation sc
π(a)
p (a), used to define the score of candidate a in

the primary of their party, which we extend to sc
π(a)
p (a, s) to define the score of candidate

a in the primary of their party, for the strategy profile s. We continue to use scg(a, {a, b})

for the score of candidate a in the general election against candidate b.

Lastly, as it common practice in the prior work on strategic candidacy games, for simplicity,

we will only be considering the plurality voting rule, for which we investigate the pure

strategy Nash Equilibria and their properties.
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5.1 Lazy Strategic Candidacy Games

The concept of a lazy strategic candidacy games(LSCG) was first introduced by Obraztsova

et al. [2015] for the direct system. The motivation of considering such games was that it is

often the case that a candidate would prefer to not take part in an election if they could not

have any influence on the outcome. This could be because of the expenses associated with

the electoral campaign (e.g. travel costs, televised advertisements or political consulting

fees) or because an unsuccessful participation in an election might harm the candidate’s

reputation. It is, therefore, of interest to also investigate the properties of such games for

the primary system.

We now adapt their model to the primary system. Formally, an LSCG, ΓL, is a tuple

ΓL(V,A,M, d, ρ, π, /) (remember that (M,d) is the metric space containing the voters and

candidates). In ΓL, a candidate c ∈ A prefers the strategy profile s to t if (i) w(s) �c w(t)

or (ii) w(s) = w(t) and sc = 0 and tc = 1. Hence, the term ”lazy”, because if candidates

are not able to influence the outcome of an election to one they prefer, they would rather

not participate in the election and incur the associated consequences.

5.1.1 Nash Equilibria

For newly introduced types of strategic candidacy games, the related literature is concerned

with firstly analysing whether they admit a PNE, and subsequently describing properties

of such equilibrium strategy profiles. We aim to do precisely that. The following results

are related to the one dimensional metric space (R, d), where d is the standard Euclidean

distance. For this setting, we know that a Condorcet winner always exists. Moreover, due

to the tie-breaking rule, the Condorcet winner must be unique, since candidates cannot

be tied. As we will show, one dimensional LSCGs reveal very interesting properties in the

primary system.

We now formally define the concept of pure strategy Nash equilibrium (PNE) of LSCGs.

A strategy profile s is a PNE of an LSCG ΓL if no player prefers to deviate from s, i.e.
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for every candidate c ∈ A, there is no strategy profile t, with ta = sa, ∀a ∈ A \ {c} and

tc = 1− sc, such that c prefers t to s.

Somewhat intuitively, we show that lazy candidates affiliated to the losing party have no

reason to participate in the election in a PNE. This is because they have no influence

over who the candidate from the opposing party is in the general election. As a result, a

candidate from the losing party would prefer to run only if they would be able to change

the outcome in both, their party’s primary and the general election to one they prefer. The

impossibility arises in the latter case, because of structural properties of one dimensional

LSCGs.

Proposition 1. Let ΓL = ΓL(V,A,R, d, ρ, π, /). Then ΓL has no PNE with candidates

running from both parties.

Proof. Suppose, for a contradiction, that there exists a PNE s of ΓL, such that ∃a, b ∈ A(s),

with π(a) 6= π(b) and w1
p(s) = a,w−1p (s) = b. Without loss of generality, assume that the

winner of the general election is a: w(s) = a. Then if b were not to run, because s is a

PNE, there must exist c ∈ A(s), with π(c) = π(b) and a �b c that would win both the

primary of party −1 and the general election. Firstly, if b were the only candidate from

party −1, them not running would mean a winning the general election, but then they

would prefer not to run and deviate, which is not possible, because s is a PNE. Secondly, c

must be the winner of the general election, otherwise b would still prefer not to participate

and it must also hold that a �b c, otherwise, if c �b a, then b would want to deviate.

Let’s also assume, without loss of generality, that b is positioned to the right of a on the

line. We distinguish the following cases:

I. c is positioned to the left of a. If c were not to run, because s is a PNE, there must exist

d ∈ A(s) with π(d) = π(c) and a �c d that would win both the primary of party −1 and

the general election. To see this, if c not running would result in b winning the primary,

then the general election winner would be a, and c would want to deviate.

• d cannot be positioned between c and a, because then d �c a.
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• Neither can d be positioned between a and b. We know that c beats a in the general

election, so scg(c, {a, c}) ≥ scg(a, {a, c}) and if scg(c, {a, c}) = scg(a, {a, c}), then

c / a. If d were positioned between a and b and scg(c, {a, c}) > scg(a, {a, c}), then

in the general election against a, scg(d, {a, d}) < scg(a, {a, d}), because a would

get at least scg(c, {a, c}), votes, while d would get at most scg(a, {a, c}) votes and

a would be the winner. If scg(c, {a, c}) = scg(a, {a, c}), then c / a. But in the

general election between d and a, a would again have at least scg(c, {a, c}) votes,

while d would have at most scg(a, {a, c}), so in order for d to beat a, we would need

scg(d, {a, d}) = scg(a, {a, d}) and d/a. We know that when b, c and d run, b has the

most votes and that if b were not to run, c would be the primary winner. However,

in that case all the votes for b would go to d, so when all of b, c and d run, b and c

must have the same number of votes in the primary (otherwise, when b does not run,

d has more votes than c and wins the primary) and b / c and d must have 0 votes.

This means that when b does not run, in order for c to win the primary against d,

they must also have the same number of votes (as all votes for b go to d) and c / d.

Lastly, we know that if c does not run, d wins the primary against b - this only

happens when d and b have the same number of votes and d / b. However, we have

reached a contradiction because it cannot hold at the same time that b / c / d and

d / b.

• Lastly, d cannot be positioned to the left of b, because d would get no extra votes

when c does not run and could not beat b in the primary.

This implies that d must be positioned to the left of c. If d were not to run, then b

could not win the primary, because a would win the general election and d would rather

deviate. Also, c could not win the primary, because it would then beat a in the general

election and c �d a, which means that there must exist e ∈ A(s) with π(e) = π(d)

that would win both the primary of party −1 and the general election against a and

a �d e. Using similar arguments as above, e would need to be positioned to the left of d.

Continuing in this manner, because the set of possible candidates is finite, we obtain that

∃b, c, d, e, f1, f2, ..., fν ∈ A(s), with π(b) = π(c) = π(d) = π(e) = π(f1) = ... = π(fν) = −1

positioned, from left to right, in the order: fν , ..., f1, e, d, c, a, b. But in this case, if fν

49



were not to run, fν−1 would win the primary and then the general election against a and

because fν−1 �fν a, fν would want to deviate - contradiction.

II. c is positioned to the right of a. Because a �b c, c must be positioned to the right of b.

Again, if c were not to run, then there must exist d ∈ A(s), with π(d) = π(c) and a �c d

that would win both the primary of party −1 and the general election. Clearly, d cannot

be positioned to the left of b, because d would get no additional votes when c does not

run and could not win the primary. Similarly, d cannot be positioned between b and c,

because when b does not participate in the election, d would get b’s votes, rather than c,

so c could not be the winner. The only exception is when sc−1p (b, s) = sc−1p (c, s) and b / c

and sc−1p (d, s) = 0. But in this case, when b does not run, all their votes go to d and in

order for c to win the primary, it must hold that sc−1p (d, s’) = sc−1p (c, s’) and c / d, where

s’x = sx,∀x ∈ A \ {b} and s’b = 0. Also, when c does not run, all their votes must go to

d and in order for d to win the primary, it must hold that sc−1p (d, s”) = sc−1p (b, s”) and

d / b, where s”x = sx, ∀x ∈ A \ {b} and s”c = 0. However, we have once again reached a

contradiction, because we have: b / c / d and d / b. Therefore, d must be positioned to the

right of c.

We can now follow a similar approach to obtain candidates b, c, d, e1, ..., eν ∈ A(s) with

π(b) = π(c) = π(d) = π(e1) = ... = π(eν) = −1 positioned, from left to right, in the order:

a, b, c, d, e1, ..., eν . But in this case, if eν were not to run, eν−1 would win the primary and

then the general election against a and because eν−1 �eν a, eν would want to deviate -

contradiction. This now completes our proof.

Again, because of the same structural properties in one dimension, the scenario becomes

even more restrictive. It turns out that not even the candidates from the winning party

are motivated to participate in the election in a PNE.

Proposition 2. Let ΓL = ΓL(V,A,R, d, ρ, π, /). ΓL has no PNE with more than one

candidate running.
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Proof. We already know that ΓL has no PNE with agents running from both parties

from Proposition 1, so let’s suppose, for a contradiction, that there exists a PNE s, such

that ∃a, b ∈ A(s), with π(a) = π(b). Clearly, the winner of the primary becomes the

winner of the general election. Without loss of generality, assume that the winner of the

general election is candidate a: w(s) = a. Because s is a PNE, if b were not to run,

a could not win the primary (because b would prefer not to run), so there must exist

c ∈ A(s), π(c) = π(b) and a �b c that would win the primary. We can now follow an

identical approach as in the proof of Proposition 1, to show that there would need to exist

candidates c, d, e, f1, ..., fν ∈ A(s), positioned in the order fν , ..., f1, e, d, c from left to right

or right to left, respectively, depending on whether candidate b is positioned to the left or

right of candidate a, respectively. However, fν would prefer to deviate, contradiction.

At this point, because of the results from Propositions 1 and 2, the notion of a Condorcet

winner becomes relevant, as the only case where an LSCG admits a PNE is when the

Condorcet winner in one of parties’ primaries would also beat all the candidates from the

opposing party in a general election. Note that this does not imply that such a candidate

would also be the Condorcet winner in the direct system, because they could lose against a

candidate from their own party if the voters from the opposing party were also allowed to

vote. As a consequence, the candidate who is the Condorcet winner in the primary of their

party is only guaranteed to win against any candidate from their party, in a two-candidate

primary election, where only the voters affiliated to the same party are allowed to vote.

Observation 5. Let ΓL = ΓL(V,A,R, d, ρ, π, /). ΓL can have at most one PNE.

Proof. Let s be a PNE of ΓL. It follows from Propositions 1 and 2 that ∃a∗ ∈ A(s) such

that sa∗ = 1 and ∀a ∈ A \ {a∗}, sa = 0. In order for s to be a PNE, a∗ must win in

the primary of their party against any a ∈ A, with π(a) = π(a∗) and we can assume,

without loss of generality that π(a∗) = 1. This means that a∗ is the Condorcet winner in

the primary of party 1. Moreover, since s is a PNE, a∗ must also win against any b ∈ A.

with π(b) = −1, which implies that a∗ also wins against the Condorcet winner from the
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primary of party −1. Hence a strategy profile in which the only candidate running is the

Condorcet winner of party −1 cannot be a PNE of ΓL. However, since there can only be

a unique Condorcet winner in the primary of party 1, s must be unique, and the proof is

complete.

It now becomes clear that not all LSCGs are guaranteed to admit a PNE. Figure 16

contains an example of a LSCG that admits no PNE. The candidates and voters from

parties 1 and −1 are coloured in yellow and green, respectively. We focus our attention

only on the strategy profiles with one candidate running, due to Proposition 2 and we

prove that none of those are PNE. Clearly, a2 is the Condorcet winner of party 1 and a5

is the Condorcet winner of party −1.

• For the strategy profile s where a2 is the only candidate running, A(s) = {a2}, if a3

were to run, they would be uncontested in the primary of party −1 and would win

against a2 in the general election, as scg(a3, {a2, a3}) = 6 and scg(a2, {a2, a3}) = 4.

Therefore, s is not a PNE.

• The strategy profiles s, s’ and s” with A(s) = {a1}, A(s’) = {a4} and A(s”) = {a3}

are not PNE either, because for s and s’, a2 would prefer to participate in the

election, while for s”, a5 would prefer to participate, as they would become the

overall winners, being the Condorcet winner in the primary of their party.

• The strategy profile s where candidate a5 is the only one running, A(s) = {a5} is

not a PNE, because if a2 were to run, they would compete in the general election,

with scg(a5, {a2, a5}) = 4 and scg(a2, {a2, a5}) = 6, so a2 would win.

Hence, there is no PNE.
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Figure 16: Example of a lazy strategic candidacy game with no PNE

5.1.2 Best-response Dynamics

The existence of a PNE for a game is generally not sufficient, from a practical point of view,

as, depending on the initial state, it may be possible that the players (or candidates) never

reach such a state dynamically. Based on this, we consider myopic dynamics of LSCG,

where states are represented by strategy profiles and a transition from a state to another

is valid only if there is precisely one player that beneficially deviates from their strategy.

5.1.2.1 J- and W-dynamics

Firstly, we consider a more restrictive type of myopic dynamics, called J-dynamics and

W-dynamics, which were introduced by Obraztsova et al. [2015] for LSCGs in the direct

system. For J- dynamics and W-dynamics, at each state one candidate can join or with-

draw from the election, respectively, should they prefer to. Moreover, once a candidate

has joined or withdrawn, they are no longer allowed to withdraw or join at a later state.

Intuitively, for J-dynamics, we start from the state with no candidates running and for

W-dynamics we start from the state with all candidates running. Although seemingly

restrictive, the dynamics do capture an attribute of real-life election; specifically, the fact

that candidates are generally not permitted to re-enter the election after they had with-

drawn. Nonetheless, it is easy to see that, in this setting, convergence of such dynamics

is guaranteed in at most m steps, with m being the number of candidates.

In their analysis, Obraztsova et al. [2015] investigate whether a certain state (e.g. repre-
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senting a PNE of the game) can be reached by J- and W-dynamics. There are positive

results (e.g. J-dynamics can reach the desired state), as well as negative ones (e.g. there

exists an LSCG for which no W-dynamics terminates in a state satisfying a certain condi-

tion). Moreover, the authors investigate whether the state with all candidates running can

be reached by such dynamics. Thus, we are interested in verifying whether their results

can be extended to one dimensional LSCGs in the primary system.

For a LSCG ΓL = ΓL(V,A,R, d, ρ, π, /), suppose a∗, π(a∗) = 1, is the Condorcet winner in

the primary of party 1 and that they would win against any candidate from party −1 in a

two-candidate general election. It follows from Observation 5, that the strategy profile s

with A(s) = {a∗} is a PNE of ΓL. We only focus on this scenario, as otherwise the game

would have no PNE.

In Proposition 3, we outline two results that extend to the primary system and notably,

with Proposition 4, we present a proof that there must exist a W-dynamics that terminates

in a state with candidate a∗ running, in contrast to the results for the direct system. One

might think that, because the game only admits one PNE, all W-dynamics will converge to

that state, however, this is not generally true, as a W-dynamics might terminate in a state

where a candidate who has previously withdrawn would prefer to re-enter the election,

but they are not allowed to.

Proposition 3. For the LSCG ΓL with PNE s, A(s) = {a∗}, there is a J-dynamics that

leads to the state s, but not all J-dynamics terminate in a state s’ with a∗ ∈ A(s’).

Proof. Trivially, ∅ → {a∗} is a terminating J-dynamics that results in the state s. However,

if we consider the example is Figure 17, with A = {a, b, c, d, e}, π(a) = π(b) = π(c) =

1, π(d) = π(e) = −1 and c / a, let’s observe that b is the Condorcet winner of party 1 and

that b would win against d or e in a general election. ∅ → {e} → {d, e} → {c, d, e} →

{a, c, d, e} is a terminating J-dynamics. In the strategy profile s’ with A(s’) = {a, c, d, e},

w1
p(s’) = a and w−1p (s’) = d, candidates a and d compete in the general election where

scg(a, {a, d}) = 5 and scg(d, {a, d}) = 3, so a wins the general election against d. If b

were to join, c would win the primary for party 1, because c would be tied for the highest

number of votes (2) with a, but preferred by the tie-breaking rule, as well as the general
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election against d, with 5 to 3 votes. However, because a �b c, as d(b, a) < d(b, c), b does

not want to join the election and the J-dynamics terminates at s’.

Figure 17: J-dynamics for a lazy strategic candidacy game

Proposition 4. For the LSCG ΓL with PNE s, A(s) = {a∗}, there must exist a W-

dynamics that terminates in a state s’ with a∗ ∈ A(s’).

Proof. Suppose, for a contradiction, that all W-dynamics terminate in a state s’ with

a∗ /∈ A(s’). Then for each W-dynamics, there must exist a state s”, where a∗ is the only

candidate who would prefer to withdraw.

• If π(w(s”)) = 1, let’s note that a∗ cannot be the only candidate from party 1 in

A(s”), because they would then be the winner of the general election and would not

want to deviate from their strategy. So there must exist b ∈ A(s”), π(b) = 1. More-

over, there must also exist c ∈ A(s”), π(c) = 1, since a∗ is the Condorcet winner of

party 1 and would win the primary of party 1 against b, as well as the general election.

We now show that there cannot be any candidate from party −1 running in s”.

Suppose, for a contradiction, that there exists x ∈ A(s”), with π(x) = −1. Then x

cannot be the only candidate running from party −1, because they would then prefer

to withdraw, so there must exist y ∈ A(s”), π(y) = −1. We can assume, without

loss of generality, that x is the winner in the primary of party −1. If x and y were

the only candidates running from party −1, then y would prefer to withdraw, so

there must exist z ∈ A(s”), π(z) = −1. Because there are at least three candidates

running from party −1, at least two of them must be positioned to the left or to
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the right of w(s”). We assume they are positioned to the left of w(s”). Now, if we

denote by a−1 the leftmost candidate running from party −1, they would prefer to

withdraw, because by their withdrawal, the winner in the general election would still

be w(s”), or the first candidate from party −1 to the right of a−1 would win both

the primary and the general election, contradiction.

Let’s now observe that a∗ must be the leftmost or rightmost candidate running

from party 1 and that w(s”) must be the rightmost of leftmost candidate running

from party 1, respectively. This means that there is at least one more candidate

from party 1, a1 positioned between a∗ and w(s”). However, in this setting, a∗

cannot be the Condorcet winner of party 1. To see this, w(s”) cannot have more

votes than a∗ in the primary of party 1 in w(s”), because a1 would then beat a∗ in a

two-candidate primary. So, w(s”) and a∗ must be tied in the primary of party 1 in

s” and w(s”) / a∗ and a1 cannot get any votes in the primary, as they would again

beat a∗ in a two-candidate primary. However, in a two-candidate primary, a∗ would

then lose to w(s”), contradiction.

• If π(w(s”)) = −1, using a similar argument to the previous case, it follows that

there must be at least three candidates running from party 1 in s”: a∗, b, c, so at

least two candidates are positioned to the left or to the right of w(s”). We assume

they are positioned to the left of w(s”). Then, the leftmost candidate, who cannot

be a∗, would prefer to withdraw, contradiction.

We are also interested in determining whether the two types of dynamics can terminate in

a state with all candidates running. Clearly, for W-dynamics, this is not true, since that

state is not a PNE in our LSCG. However, there exists a J-dynamics that reaches a state

with all candidates running. More specifically, the example in Figure 18 contains one such

J-dynamics: ∅ → {e} → {d, e} → {c, d, e} → {b, c, d, e} → {a, b, c, d, e}.
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Figure 18: J-dynamics terminating in a state with all candidates running for a lazy strate-
gic candidacy game

5.1.2.2 Equilibrium Dynamics

We extend the previous setting of myopic dynamics by allowing our dynamics to start

from any initial state, and candidates may now change their status, from participating in

the election to abstaining and reversely, any number of times, should they prefer to. We

term this ”equilibrium dynamics”.

A similar concept has been studied by Polukarov et al. [2015] for regular strategic candi-

dacy games in the direct system. However, the main focus of the paper was on dynamic

candidacies with refusing voters, i.e. voters that block their most preferred candidate, if

they had previously withdrawn from the election, with a given probability.

Even though such dynamics are more unusual in political scenarios, we once again note

that, although we frequently use the term ”election” in this project, we are not constrained

to political elections. Rather, our results apply to general decision-making processes.

As a consequence, as mentioned by Polukarov et al. [2015], this type of dynamics can

be encountered in sale campaigns of online shops, as well as online photography, art or

literature competitions, where users are not restricted to adding or removing items a

certain amount of times.

Again, we focus on the case when a LSCG ΓL = ΓL(V,A,R, d, ρ, π, /) admits a PNE s

with A(s) = {a∗}. We can assume, without loss of generality, that π(a∗) = 1, so a∗ is the

Condorcet winner in the primary of party 1 and they would win against any candidate

from party −1 in a two-candidate general election. We show that the equilibrium state will

be reached with probability 1 by all equilibrium dynamics. Trivially, once the equilibrium
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state has been reached, no agents want to deviate and the dynamics terminate. Our results

from Theorem 2 are in line with those for the direct system (Polukarov et al. [2015] proved

that the probability of convergence of such dynamics to an equilibrium state, for games

with refusing voters, is also 1).

Theorem 2. For the LSCG ΓL, with a PNE s, A(s) = {a∗}, with probability 1, any

equilibrium dynamics will reach the state s.

Proof. We define a Markov chain, with the set of states S = {s1, . . . , s2m}, where m = |A|

and each state represents a strategy profile of ΓL, and the initial state sinit ∈ S. We use

w(si) to denote the winner of the election in state si ∈ S. Given a state s′ ∈ S, if the

set of candidates who would prefer to deviate is denoted by D, with |D| = x > 0, then

there will be precisely x transitions, each having a probability of 1
x , to the states where

candidates in D individually change their strategy. In the case that s′ corresponds to

the strategy profile s, we add a self-loop on that state with probability 1. Formally, the

transition probability matrix is defined as follows:

P (si, sj) =



1

|Ai|
∃a ∈ Ai, sja = 1− sia and ∀x ∈ A \ {a}, sjx = six

1 i = j and Ai = ∅

0 otherwise

We note that the Markov property does indeed hold: the probability of transitioning from

a state to another only depends on the current state and is independent of any previously

visited states.

Since s is a PNE of ΓL, there must exist a state s∗ ∈ S, corresponding to the strategy

profile s, that is absorbing, i.e. P (s∗, s∗) = 1. Moreover, because s is the only PNE of ΓL,

s∗ must be the only absorbing state.

We can now show that the state s∗ is reachable from any other state, and we do so by

induction. Specifically, we aim to show that from a state with k candidates running, s∗

can always be reached, ∀k, 1 ≤ k ≤ m:

• Base case: k = 1. Clearly, if a∗ is the only candidate running, we are done. Oth-
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erwise, if a different candidate a, a 6= a∗ is the only candidate running, a∗ would

prefer to join, irrespective of the party affiliation of candidate a, as they would

become the winner of the general election and a would then prefer to withdraw:

{a} → {a∗, a} → {a∗}.

• Inductive step: We assume that from any state with k candidates running, s∗ can

always be reached, and we show that s∗ is also reachable from any state with k + 1

candidates running. Let sx be a state with k + 1 candidates running.

1. w(sx) = a∗. If there exists a candidate a−1 running from party −1 in sx,

then they would prefer to withdraw, as a∗ would win against any candidate

from party −1. From that state, by the induction hypothesis, we could then

reach s∗. If there is no candidate running from party −1, then the leftmost

or the rightmost candidate from party 1 would prefer to withdraw, depending

on whether a∗ is the rightmost or the leftmost candidate and by the induction

hypothesis, we could then reach s∗.

2. w(sx) 6= a∗. If a∗ is running in sx, then there must be at least three candidates

running from party 1, including a∗, as otherwise a∗ would win the primary of

party 1 and the general election. If π(w(sx)) = −1, then at least two candi-

dates from party 1 are positioned to the left or to the right of w(sx) and the

leftmost or rightmost candidate, respectively, who cannot be a∗, would prefer

to withdraw.

If π(w(sx)) = 1 and there is only one candidate running from party −1, that

candidate would prefer to withdraw. If there are two candidates running from

party −1, the candidate losing in the primary of party −1 would prefer to

withdraw. Lastly, if there are at least three candidates running from party

−1, at least two must be positioned to the left, or to the right of w(sx) and

the leftmost or the rightmost candidate, respectively, would prefer to withdraw.

We have shown that we can reach a state with only k candidates running and

by the induction hypothesis, we could then reach s∗.

59



By induction, we conclude that we can reach s∗ from any state with k candidates running,

∀k, 1 ≤ k ≤ m. Thus, our Markov chain is absorbing, and the probability of being in s∗

after ν steps tends to 1, as ν tends to infinity [Kemeny et al., 1960].

Remark 2. We note that the results from Theorem 2 do not imply that all equilibrium

dynamics will reach the state s. This is also justified by the fact that the PCTL formula

P≥1[♦s] and the CTL formula ∀♦s are not equivalent (i.e. starting from the initial state,

if all infinite paths, or in our case, sequences of states, with probability greater than 0

eventually reach the state s, it does not mean that all possible paths from the initial state,

including those with a probability of 0, will also reach that state). If we again consider the

example from Figure 17, ({a, b, c} → {a, c} → {a} → {a, b})ω is an equilibrium dynamics

that never reaches the state corresponding to the strategy profile {b}, the only PNE of the

game, but such a path has probability 0 in our Markov chain.

5.2 Eager Strategic Candidacy Games

As it could be seen, lazy strategic candidacy games do not extend very well for the primary

system, at least in one dimension, since they can have at most one PNE, nonetheless, with

only one candidate running. For this reason, we define a new type of games, which we term

”eager strategic candidacy games” (ESCG), where in addition to being lazy, a candidate

would prefer to run in the election, even if they could not become the general winner,

but would win in the primary of their party. Consider, for example, the 2020 presidential

election in the US, with the main contenders being Biden and Trump. It is very likely

that Trump would still have preferred to participate in the election, even if he knew that

he was going to lose to Biden in the general election, at least for the impact and influence

he could have gained over the Republican party.

An ESCG, ΓE , is then a tuple ΓE(V,A,M, d, ρ, π, /). Formally, in ΓE a candidate c ∈ A

prefers the strategy profile s to t if (i) w(s) �c w(t) or (ii) w(s) = w(t), w
π(c)
p (s) = c and

w
π(c)
p (t) 6= c or (iii) w(s) = w(t),w

π(c)
p (s) 6= c, w

π(c)
p (t) 6= c and sc = 0 and tc = 1.
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5.2.1 Nash Equilibria

We follow a similar approach to that for LSCGs, in that we begin by investigating the

properties of PNE of ESCGs. The following results are related to the one dimensional

metric space (R, d), where d is the standard Euclidean distance. For this setting, we know

that a Condorcet winner always exists. In addition, just as for LSCGs, the Condorcet

winner is unique.

Firstly, we formally define the PNE of ESCGs. A strategy profile s is a PNE of an ESCG

ΓE if no player prefers to deviate from s, i.e. for every candidate c ∈ A, there is no strategy

profile t, with ta = sa,∀a ∈ A \ {c} and ta = 1− sa such that c prefers t to s.

Although we have relaxed the notion of lazy candidates, so that candidates representing

the losing party also get some incentive to participate in the election, it turns out that in

a PNE, the candidates from the losing party are still not present in high numbers. Rather,

there can only be one candidate running from the losing party in a PNE.

Proposition 5. Let ΓE = ΓE(V,A,R, d, ρ, π, /). Then ΓE has no PNE with more than

one candidate running from the losing party.

Proof. Let s be a PNE with w(s) = a and suppose, for a contradiction, that ∃b, c ∈

A(s), π(b) = π(c), π(b) 6= π(a), with w
π(b)
p (s) = b. Then, if c were not to run, for s to be a

PNE, there must exist d ∈ A(s), with π(d) = π(c) and a �c d that would win the primary

of their party and the general election. At this point, we follow the same arguments as in

the proof of Proposition 1 to obtain a contradiction.

Unsurprisingly, we come across the notion of Condorcet winners again, as the candidate

running from the losing party can only be the Condorcet winner from that party’s primary.

The reasoning is also quite obvious, as they are the only candidate who are guaranteed

beat any other candidate in the primary of their party, and thus, no other candidate from

the same party has any reason to participate in the election.

Observation 6. Let ΓE = ΓE(V,A,R, d, ρ, π, /). In any PNE of ΓE, the only running
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candidate from the losing party is the Condorcet winner from the associated primary.

Proof. Let s be a PNE of ΓE . It follows from Proposition 5 that ∃a∗ ∈ A(s) such that

π(a∗) 6= π(w(s)), sa∗ = 1 and ∀a ∈ A \ {a∗}, with π(a) = π(a∗), sa = 0. In order for s to

be a PNE, a∗ must win against any other candidate in a two-candidate primary of their

party, which implies that a∗ is the Condorcet winner in their party’s primary.

Note that in Observation 6, we do not impose any restrictions on the number of candidates

running from the winning party. For the example displayed in Figure 19, with A =

{a−1, a1, a2, ..., an}, π(a1) = ... = π(an) = 1, π(a−1) = −1, we show that there exists a

PNE with all the candidates from party 1 running in the election. To see this, consider

the strategy profile s, with si = 1, ∀i ∈ A. In the primary of party 1, ai gets k voters for

2 ≤ i ≤ n, while a1 gets k + 1 votes, so a1 wins the primary and competes against a−1,

who is uncontested in their party, in the general election.

• Clearly a1 wins the general election, as a−1 receives no votes. So a1 has no reason

to deviate and neither does a−1, because they win the primary of their party.

• If ai were not to run, with 3 ≤ i ≤ n, all the voters who previously voted for ai would

vote for ai−1, so ai−1 would have 2k votes in the primary of party 1 and would be

the winner of the primary. In the general election, ai−1 would receive (n−1)k votes,

while a−1 would receive (n− 1)k + 1 votes and the winner would be a−1. However,

a1 �ai a−1, ∀i, with 3 ≤ i ≤ n, so ai would not want to deviate.

• If a2 were not to run, a3 would receive 2k votes in the primary and become the

winner of the primary, but we have already shown that a−1 would beat a3 in the

general election and because a1 �a2 a−1, a2 would not want to deviate either.

Hence s is a PNE.

The number of participating candidates in PNE of ESCGs stands in a drastic contrast with

our results for LSCGs and it proves that the presence of even a single candidate from the

opposing party can have an important impact on whether the candidates from the winning
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Figure 19: Example of a PNE in eager strategic candidacy games

party decide to participate in the election or not. This is because if a candidate from the

winning party changes their strategy and a new candidate wins in the primary of their

party, that candidate has to compete in a general election, and they could potentially lose.

So it does not matter that the winner in the primary was more preferred by the deviating

candidate if the overall winner is not. As a result, candidates might have to run just to

ensure that they prevent someone from winning in the primary of their party and then

losing the general election.

Another difference from LSCGs, for which there were instances that did not admit a PNE,

is that for any ESCGs we are able to describe a characterization of a PNE in which there

are only two candidates running, who, unsurprisingly, are the Condorcet winners in the

primaries of each party.

Proposition 6. Let ΓE = ΓE(V,A,R, d, ρ, π, /). The strategy profile s, sa1∗ = sa∗−1
= 1

and sa = 0, ∀a ∈ A \ {a1∗, a∗−1} is a PNE of ΓE, where a1
∗ and a∗−1 are the Condorcet

winners in the primary of party 1 and −1, respectively.

Proof. Neither of a1
∗, a∗−1 wants to withdraw, since one of them wins the general election

and the other is the primary winner of their party. Moreover, no candidate wants to

join the election either, since they would lose in the primary of their party against the

respective Condorcet winner. Thus, s is a PNE.
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We now investigate the possible equilibrium outcomes of ESCGs in which there exists a

candidate who is Pareto-dominated - the dominating candidate is more preferred than

the dominated candidate by all voters. In other words, let candidate a Pareto-dominate

candidate b (i.e. a �v b for all v ∈ V ). It might be natural to assume that candidate

b can never be the winner of an election in an equilibrium state of an ESCG, but as we

demonstrate in Proposition 7 and in the example from Figure 20, the tie-breaking rule

plays a crucial role in establishing whether such equilibrium states exist.

Proposition 7. Let ΓE = ΓE(V,A,R, d, ρ, π, /) and suppose candidate a Pareto-dominates

candidate b. If a / b and π(a) = π(b), then b cannot be the election winner in a PNE of

ΓE.

Proof. Suppose, for a contradiction, that there exists a PNE s with w(s) = b. Without loss

of generality, let π(b) = 1. If t = sc1p(b, s) > 0, then a /∈ A(s), because if a were to run, b

would get no votes in the primary and hence could not be the winner of the election. Let’s

observe that by considering the modified strategy profile s’ with s’c = sc,∀c ∈ A\{a} and

s’a = 1, it follows that: sc1p(a, s’) ≥ sc1p(b, s) ≥ sc1p(c, s) ≥ sc1p(c, s’), ∀c ∈ A \ {a, b}, π(c) =

1. If ∃c ∈ A\{a, b}, π(c) = 1 such that sc1p(c, s) = sc1p(b, s)⇒ b/ c, because b is the winner

of the election. Lastly, because a / b it follows that a = w1
p(s’). Moreover, a would also

win the general election in s’, since they would receive at least as many votes as b did in

s and is also preferred by the tie-breaking rule, in case of a tie (a tie would only occur

if b were also tied in the general election in s against the candidate from party −1, a−1,

so b / a−1). As a result, a would prefer to run in the election. Hence, a would prefer to

deviate in s, which means that s is not a PNE of ΓE , contradiction.

We show why the condition a / b is necessary by considering the example from Figure 20,

where A = {a, b, c, d, a−1}, with π(a) = π(b) = π(c) = π(d) = 1 and π(a−1) = −1 and

V = {v1, v2, v3, v4, v5, v−1, v−2, v−3}, with π(v1) = π(v2) = π(v3) = π(v4) = π(v5) = 1 and

π(v−1) = π(v−2) = π(v−3) = −1. Moreover, we assume that b / c / a.

Consider the strategy profile s: sa = 0, sb = sc = sd = sa−1 = 1. Clearly, a−1 is the only

candidate of party −1, so they win the primary and participate in the general election,
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Figure 20: Example of a PNE where candidate b is the winner

against the primary winner from party 1. For this strategy profile, the primary winner of

party 1 is b, because sc1p(b, s) = sc1p(c, s) = 2, sc1p(d, s) = 1 and because b / c, b becomes

the winner of the primary. So the general election is between b and a−1, with b being the

winner, as scg(b, {b, a−1}) = 8 and scg(a−1, {b, a−1}) = 0. It remains to show that s is a

PNE.

• If candidate a were to run, then in the primary for party 1, sc1p(a, s’) = sc1p(c, s’) = 2

and sc1p(d, s’) = 1, where s’a = 1 and s’x = sx, ∀x ∈ A\{a}. Because c/a, c becomes

the winner of the primary. In the general election against a−1, scg(c, {c, a−1}) = 3

(votes from v3, v4, v5) and scg(a−1, {c, a−1}) = 5, so a−1 wins the general election.

But clearly b �a a−1, so a would not want to deviate.

• b does not want to deviate, because they are the winner of the election and candidates

have self-supporting preferences.

• If candidate c were not to run, then for the primary of party 1, sc1p(d, s’) = 3

and sc1p(b, s’) = 2 and d would compete in the general election against a−1, where

s’c = 0 and s’x = sx,∀x ∈ A \ {c}. In the general election, scg(d, {d, a−1}) = 3 and

scg(a−1, {d, a−1}) = 5, so a−1 would be the winner. But b �c a−1, so c would not

want to deviate.

• If d were not to run, in the primary of party 1, sc1p(c, s’) = 3 and sc1p(b, s’) = 2 so

c would be the primary winner, where s’d = 0 and s’x = sx,∀x ∈ A \ {d}. In the

general election, scg(c, {c, a−1}) = 3 and scg(a−1, {c, a−1}) = 5 and a−1 would be

the winner. Because b �d a−1, d would not want to deviate either.
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• Lastly, if candidate a−1 were not to run, there would be no contestant in the general

election from party −1, so b would win the general election. But, a−1 would prefer

to at least win the primary, so they would not want to deviate.

Therefore s is indeed a PNE.

5.2.2 Complexity of PNE

As our analysis has highlighted, even for one dimensional ESCGs, the number of partici-

pating candidates in an equilibrium state can be as low as two, but also arbitrarily large.

As a consequence, discovering all PNE might prove to be challenging, fact that motivates

investigating the computational complexity of finding PNE in ESCGs.

For this purpose, we define the following decision problems under plurality voting:

• EagerNE: An instance is an ESCG ΓE = ΓE(V,A,M, d, ρ, π, /) and a strategy

profile s. The answer is true if s is a PNE of ΓE and false otherwise.

• Eager∃NE: An instance is an ESCG ΓE = ΓE(V,A,M, d, ρ, π, /). The answer is

true if ΓE has a PNE and false otherwise.

• Eager∃wNE: An instance is an ESCG ΓE = ΓE(V,A,M, d, ρ, π, /) and a candidate

c ∈ A. The answer is true is there exists a PNE s of ΓE , with w(s) = c and false

otherwise.

Before we delve into the analysis, it is worth mentioning that analogous decision problems

are considered by Obraztsova et al. [2015] for lazy strategic candidacy games in the direct

system (note that their model does not use a metric space and their results would not

hold for one dimensional games). Essentially, if we considered higher metric spaces for

our LSCGs, all their results would also apply to our setting, since we could consider an

instance with no candidates affiliated to one of the parties. Relevant to us, however, is

their Lazy∃wNE problem, shown to be NP-complete, for which an instance is a LSCG

Γ = Γ(A, V, P V , PC , /) and a candidate c, where P V and PC represent the preference
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profiles of the voters and candidates, respectively, and the answer is true if there exists a

PNE s of Γ with w(s) = c and false otherwise.

Coming back to our analysis, it is clear that EagerNE is in P, since for a given strategy

profile s, for each candidate c, we need to check whether c would prefer the strategy profile

s’ to s, where s’c = 1 − sc and s’i = si,∀i ∈ A \ {c}. Hence, we only need to check m

strategy profiles, where m is the number of candidates.

Moreover, if we are dealing with one dimensional games, we know that Condorcet winners

always exist for the primaries of both parties and it follows from Proposition 6 that

Eager∃NE is also in P. Generally, however, this is no longer true, if we consider metric

spaces of larger dimensions.

Theorem 3. For eager strategic candidacy games, the decision problems Eager∃NE and

Eager∃wNE are NP-complete.

Proof. It follows immediately, from the fact that EagerNE is in P, that Eager∃NE

and Eager∃wNE are in NP. To show NP-hardness, we base our proof on the findings

of Obraztsova et al. [2015]. More specifically, we describe a reduction from Lazy∃wNE

described above.

Let’s first notice that a game with |A| = m and arbitrary voters and candidates’ prefer-

ences can be encoded by the hypercube of dimension m. We explicitly choose the LSCG

constructed in their proof, Γ(A, V, P V , PC , /) and construct an eager strategic candidacy

game ΓE = ΓE(V ′, A′,R6r+4, d, ρ′, π, /), where |A| = m = 6r + 3, with A′ = A ∪ {a−1},

V ′ = V ∪ {v−1} such that π(a) = 1,∀a ∈ A, π(a−1) = −1 and π(v) = 1,∀v ∈ V ,

π(v−1) = −1. Moreover, we keep the same tie-breaking rule, for which we additionally

require a / a−1,∀a ∈ A. Lastly, our game can be encoded in the hypercube of dimension

m+1, so we can set ρ′(a) = (ρ(a), 0),∀a ∈ A; ρ′(a−1) = (0, 0, ..., 0︸ ︷︷ ︸
m zeroes

,maxv∈V,a∈A(d(v, a)+1)

and similarly, ρ′(v) = (ρ(v), 0),∀v ∈ V ; ρ′(v−1) = (ρ(w1), 0), where ρ : V ∪ A → Rm

is a function that positions voters and candidates of Γ into Rm, in order to obtain the

preference profiles P V and PC of Γ.
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In the considered instance, Γ, w1 ∈ A is a distinguished candidate, because if Γ admits a

PNE s, then w(s) = w1.

We now show that if we have started with a true instance of Lazy∃wNE, then ΓE has a

PNE s’ with w(s’) = w1, and if we have started with a false instance, ΓE has no PNE.

This is enough to prove that both problems are NP-hard.

If Γ has a PNE s with w(s) = w1, we show that s’, with s’a = sa,∀a ∈ A and s’a−1 = 1 is

a PNE for ΓE with w(s’) = w1. Let’s observe that the winner in the primary of party 1 is

precisely w1, the winner in s. Candidate a−1 is uncontested in the primary of party −1,

so they also advance to the general election. The general election is clearly won by w1, as

a−1 receives no votes, so w(s’) = w1. To see that s’ is a PNE we note that:

• w1 does not want to withdraw, as they win the general election.

• a−1 does not want to withdraw, as they win the primary of party −1.

• Any a ∈ A\{w1} with s’a = 0 does not want to deviate, because of the fact that s is

a PNE of Γ. Suppose, for a contradiction, that a would prefer to run in s’. Then the

winner of the primary of party 1 cannot be w1. Let’s assume that a∗, π(a∗) = 1, is

the winner of the primary. It then follows that a∗ �a w1, contradiction, as a would

prefer to run in s, so s could not be a PNE of Γ.

• Any a ∈ A \ {w1} with s’a = 1 does not want to deviate either. Suppose, for a

contradiction, that a would prefer not to run in s’. This means that the winner of

the primary of party 1 could still be w1, or the winner of the primary is a∗, π(a∗) = 1,

and a∗ �a w1. In both cases, however, it follows that a would prefer to withdraw in

s as well, contradiction.

So s’ is a PNE of ΓE and w(s’) = w1.

Conversely, if ΓE has a PNE s, we prove that s’, with s’a = sa,∀a ∈ A is a PNE of Γ and

w(s’) = w1.

Clearly sa−1 = 1, because a−1 is uncontested in the primary of party −1 and they prefer
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winning the primary to not participating in the election. Morever, since Γ does not have

a Condorcet winner [Obraztsova et al., 2015], then there is no Condorcet winner for the

primary of party 1 either, so there are no PNE with only two candidates running. Lastly,

we observe that the winner in the primary of party 1 corresponds to the winner of Γ and

because in Γ all PNE have w1 as the winner, it must hold that in any PNE of ΓE , w1

wins the primary of party 1. This directly implies that in any PNE of ΓE , w1 is also the

winner, since a−1 receives no votes in a general election against w1. So w(s) = w1 and

w(s’) = w1.

Lastly, we show that s’ is a PNE of Γ.

• w1 does not want to withdraw, because they are the winner of the election.

• Any a ∈ A \ {w1} with s’a = 0 does not want to deviate, because of the fact that

s is a PNE of ΓE . Suppose, for a contradiction, that a would prefer to run in s’.

Then the winner of the election cannot be w1. Let’s assume that a∗, π(a∗) = 1, is

the winner of election. It then follows that a∗ is also the winner in the primary of

party 1 and the winner of the general election in s and a∗ �a w1, contradiction, as

a would prefer to run in s, so s could not be a PNE of ΓE .

• Any a ∈ A \ {w1} with s’a = 1 does not want to deviate either. Suppose, for a

contradiction, that a would prefer not to run in s’. This means that the winner

of the election could still be w1, or the winner of the election is a∗, π(a∗) = 1, and

a∗ �a w1. In both cases, however, it follows that a would prefer to withdraw in s as

well, contradiction.

So s’ is a PNE of Γ with w(s’) = w1.

5.3 Keen Strategic Candidacy Games

Keen strategic candidacy games (KSCG) are yet another type of strategic candidacy games

considered in the literature for the direct system [Lang et al., 2019]. This type of games
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models the fact that candidates may gain utility from participating in the election, even

if they do not end up winning the election or the primary of their party. To support this

statement, we cite from Bol et al. [2016]: ”parties need constant visibility and are likely

to endorse a candidate for an election even if she has no chance of winning”. Indeed, this

is a very strong argument, as it is of high importance for parties to constantly have their

platform exposed, so that they receive support from the general public. In this section,

we extend the model for direct elections to primary systems, and begin by investigating

whether analogous results to those obtained by Lang et al. [2019] also hold in the primary

system.

Formally, a KSCG, ΓK , is a tuple ΓK(V,A,M, d, ρ, π, ε, /). We denote the participation

bias by ε, with ε > 0. For this, we define the utility of a candidate c for a strategy profile

s: Uc(s) = d(ρ(c), ρ(w(s))) − bc(s), where bc(s) = 0, if sc = 0 and bc(s) = ε, if sc = 1.

A candidate c then prefers the strategy profile s to t if Uc(s) < Uc(t). To help with

readability, rather than using d(ρ(a), ρ(b)) to denote the distance between the positions of

candidates a and b in the metric space, we will use d(a, b).

5.3.1 Nash Equilibria

Similar to our work on the other two types of strategic candidacy games, we start by

investigating the properties of PNE of KSCGs. The following results are related to the

one dimensional metric space (R, d), where d is the standard Euclidean distance.

A strategy profile s is a PNE of a KSCG ΓK if no player prefers to deviate from s, i.e.

for every candidate c ∈ A, there is no strategy profile t, with ta = sa, ∀a ∈ A \ {c} and

ta = 1− sa such that c prefers t to s.

We have seen that for the other two types of games we considered, candidates were only

motivated to participate in an election if they could have some sort of influence over the

outcome. In other words, we could think that there was a negative bias associated to the

participation in the election. On the other hand, since in KSCGs candidate gain additional

utility for taking part in the election, it is expected the properties of their PNE differ from
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what we have encountered so far for LSCGs and ESCGs. As a result, in every PNE of a

KSCG, each party must be represented by at least one candidate. Moreover, in contrast

with the results for ESCGs, there must be at least two candidates running from the losing

party.

Proposition 8. Let ΓK = ΓK(V,A,R, d, ρ, π, ε, /). Every PNE of ΓK must have candi-

dates running from both parties. Moreover, if there are at least two candidates associated

with the losing party, at least two of them must run in any PNE of ΓK .

Proof. Suppose, for a contradiction, that there exists a PNE s of ΓK , such that ∃a ∈ A(s)

and ∀b ∈ A, with π(b) 6= π(a), sb = 0. Moreover, we can assume, without loss of generality

that w(s) = a. Consider a candidate b ∈ A, with π(b) 6= π(a). If we consider the strategy

profile s’, with s’c = sc,∀c ∈ A \ {b} and s’b = 1, then candidate a would still win the

primary of their party and would compete against b in the general election. However,

Ub(s’) = d(b, w(s’))− ε ≤ d(b, a)− ε < −d(b, a) = d(b, w(s)) = Ub(s) and b would want to

deviate, contradiction.

For the second part, suppose again, for a contradiction, that there exists a PNE s of ΓK ,

with w(s) = a and that ∃b ∈ A(s) with π(b) 6= π(a) and ∀c ∈ A \ {b}, π(c) = π(b), sc = 0.

We know that |{c|c ∈ A \ {b}, π(c) = π(b)}| > 0, so there must exist c ∈ A \ {b}, π(c) =

π(b). By considering the strategy profile s’ : s’x = sx, ∀x ∈ A \ {c}, s’c = 1, because

Uc(s’) = d(c, w(s’)) − ε ≤ d(c, a) − ε < d(c, a) = d(c, w(s)) = Uc(s), candidate c would

want to join the election, contradiction.

For LSCGs, we characterised the condition that needs to be fulfilled so that a game admits

a PNE, while for ESCGs, we have shown that each game must have at least one PNE,

which we managed to identify precisely. It turns out, that if we focus on KSCGs where

the size of the candidates’ set is three, even for a small value of the participation bias

(i.e. the value of the participation bias cannot influence a candidate’s preference over two

different outcomes), there must exist at least one PNE. Note that we are unable to fully

characterise such a PNE: it could be that the strategy profile with all candidates running

or some strategy profile with two candidates, from different parties, running.
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Observation 7. Let ΓK = ΓK(V,A,R, d, ρ, π, ε, /). If ε < minc,a,b∈A,a 6=b|d(c, a)− d(c, b)|

and |A| = 3, ΓK must have at least one PNE.

Proof. Suppose, for a contradiction, that ΓK has no PNE. We can assume, without loss

of generality that A = {a, b, c}, π(a) = π(b) = 1, π(c) = −1. Then, because the strategy

profile s, with all candidates running, is not a PNE, one candidate must want to deviate.

Let’s notice that it must hold that π(w(s)) = −1, because otherwise, w(s) would clearly not

want to deviate and neither would the other candidates, because their withdrawal would

not change the general winner, so they would prefer to participate in the election. Let’s

assume that candidate a wins against candidate b in the primary for party −1. Because s

is not a PNE, a would want to withdraw, which implies that in the strategy profile s’, with

A(s’) = {b, c}, i.e. only candidates b and c running, b would beat c in the general election

and Ua(s’) < Ua(s). However, s’ would then be a PNE of ΓK , because a would not want

to join the election and neither would b or c want to withdraw, contradiction.

However, if we increase the size of the candidates’ set by only 1, the existence of PNE

of a KSCG is no longer guaranteed for games satisfying certain conditions (even though

such conditions are very specific, they are of theoretical importance). Next, we present an

analysis of the existence of PNE in such KSCGs and describe the conditions than need to

be fulfilled so that a KSCG admits no PNE.

Analysis of the existence of PNE in KSCGs with ε < minc,a,b∈A,a 6=b|d(c, a)−d(c, b)|

and |A| = 4:

Let ΓK = ΓK(V,A,R, d, ρ, π, ε, /), with ε < minc,a,b∈A,a 6=b|d(c, a) − d(c, b)| and |A| = 4.

Suppose that ΓK has no PNE and A = {a, b, c, d}. We distinguish two cases:

1. One party is represented by only one candidate: π(a) = π(b) = π(c) = 1, π(d) = −1.

The strategy profile s, sx = 1,∀x ∈ A is not a PNE, so one candidate from party 1

must prefer to withdraw.

i. If w(s) = d, let’s assume that candidate a would prefer to withdraw. If a were
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the winner of the primary of party 1, in the strategy profile s’ with A(s’) = {b, c, d},

the winner of the primary must also win in the general election against d and

d(a, d) > d(a,w(s’)). However, s’ is a PNE, because a would not prefer to join

and neither would any of b, c, d want to withdraw: one of b, c wins the general elec-

tion and the other one cannot change the election winner, so they would rather

participate, due to the participation bias, contradiction. If a were not the winner

of the primary of party 1, let’s assume b were. Then, in the strategy profile s’ with

A(s’) = {b, c, d}, candidate c must win the primary and the general election against

d. But again, s’ must be a PNE, for the same arguments as above, contradiction.

ii. If w(s) 6= d, let’s suppose that w(s) = a. Clearly a would not want to with-

draw, so let’s suppose that b would prefer to withdraw. Then, in the strategy profile

s’, with A(s’) = {a, c, d}, c must win the primary for party 1 and the winner of the

general election must be d as otherwise, with c winning the general election, as be-

fore, s’ would be a PNE. This implies that d(b, a) > d(b, d). Because s’ is also not a

PNE, and since b does not want to join and a, d do not want to withdraw, c must pre-

fer to withdraw and because a wins against d in a general election, d(c, d) > d(c, a).

Thinking about how candidates a, b, c can be ordered on a line from left to right, we

dismiss the orders: b, a, c and c, a, b, because by b’s withdrawal, c would receive no

extra votes and would not beat a in the primary.

– For the ordering a, b, c, because d(c, d) > d(c, a), d can only be positioned to

the left of a, in which case d(b, d) = d(b, a)+d(a, d) and d(b, a) > d(b, d) cannot

be true, or to the right of c and we have d(b, a) > d(b, d) = d(b, c) + d(c, d) >

d(b, c) + d(c, a) = d(b, c) + d(c, b) + d(b, a), contradiction. The ordering c, b, a is

symmetric to this ordering.

– For the ordering a, c, b, because d(b, a) > d(b, d), d cannot be positioned to the

left of a. Moreover, because d(c, d) > d(c, a), d must must be positioned to the

right of c. However, because a beats d in the general election, c must have at

least as many votes as d in a general election, because they would get at least

as many votes as a would in a general election against d. This means that there
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exist instances in which there is no PNE, namely, those when a is tied with

d in the general election, so a / d, c is tied with d in the general election, so

d/ c and by b’s withdrawal, c receives enough extra votes to win in the primary

against a, without the help of the tie-breaking rule. The ordering b, c, a is also

symmetric to this ordering.

2. Each party is represented by two candidates: π(a) = π(b) = 1, π(c) = π(d) = −1.

Let’s assume that in strategy profile s, sx = 1, ∀x ∈ A,w(s) = d and that candidate

a wins the primary of party 1. If the following conditions hold, the game has no

PNE:

– In the strategy profile s’, s’a = 0, s’x = 1,∀x ∈ A \ {a}, b wins against d in the

general election and d(a, b) < d(a, d).

– In the strategy profile s”, s”a = s”d = 0, s”b = s”c = 1, c wins against b in the

general election and d(d, c) < d(d, b).

To see this, from Proposition 8, any strategy profile with only one or two candidates

running, cannot be a PNE. Moreover, s, sx = 1, ∀x ∈ A is not a PNE, because a

would rather withdraw. Similarly, s’, s’a = 0, s’x = 1, ∀x ∈ A \ {a} is not a PNE,

because d would rather withdraw. Lastly, the strategy profiles with candidates

{a, b, c}, {a, b, d} and {a, c, d}, respectively, running are not PNEs, because d, c and

b, respectively, would rather join the election.

Remark 3. Even if we enforce party separability between candidates and voters, we can

still find KSCGs with four candidates that admit no PNE. Consider the example from

Figure 21, where A = {a, b, c, d}, π(a) = π(b) = π(c) = 1, π(d) = −1 and suppose a / d / c

and d(b, d) < d(b, a). For simplicity, we refer to {x, y} as a strategy profile with only x

and y running and we consider all possible strategy profiles:

• From Proposition 8, we know that any strategy profile with one candidate running,

or with two candidates running from the same party is not a PNE. This means that

we can rule out the following strategy profiles: {a}, {b}, {c}, {d}, {a, c}, {a, b},

{c, b}.
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• For {a, b, c, d}, a wins the primary for party 1, as sc1p(a) = 3, while sc1p(b) = sc1p(c) =

2 a. In the general election, scg(a, {a, d}) = scg(d, {a, d}) = 5, but since a/d, a wins

the general election. However, b would prefer to withdraw, because c would then

win the primary for party 1 and d would beat c in the general election. So {a, b, c, d}

is not a PNE.

• {a, b, d} is not a PNE, because a wins in the general election against d and c would

prefer to join because of the participation bias.

• {c, b, d} is not a PNE, because d wins in the general election against c and a would

prefer to join, since they would become the winner.

• {a, c, b} is not a PNE, because there is no candidate running from party −1, so d

would prefer to join.

• {a, c, d} is not a PNE, because d wins against c in the general election and c would

rather withdraw, as that would make a the winner and d(c, a) < d(c, d).

• {b, d} is not a PNE, because a would prefer to join, as they would win the general

election.

• {a, d} is not a PNE, because a wins against d in the general election and b would

prefer to join, due to the participation bias.

• {c, d} is not a PNE, because d wins in the general election and a would prefer to

join, due to the participation bias.

Figure 21: Example of a keen strategic candidacy game with 4 candidates, party separa-
bility and no PNE
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Remark 4. Further, even if there are two candidates representing each party, party sep-

arability is not enough to enforce the existence of a PNE. Considering the example from

Figure 22, A = {a, b, c, d}, π(a) = π(b) = 1, π(d) = π(c) = −1 and suppose c / b / d / a.

Again, we refer to {x, y} as a strategy profile with only x and y running and consider all

strategy profiles:

• From Proposition 8, we can rule out the following strategy profiles: {a}, {b}, {c},

{d}, {a, b}, {c, d}, {a, c}, {a, d}, {b, c}, {b, d}.

• {a, b, c, d} is not a PNE, because a loses against d in the general election, due to the

tie-breaking rule and they would prefer to withdraw, since b would win against d in

the general election.

• {a, b, d} is not a PNE, because d wins in the general election against a and c would

prefer to join because of the participation bias.

• {c, b, d} is not a PNE, because b wins in the general election against d and d would

prefer to withdraw, as c would win against b in the general election.

• {a, c, b} is not a PNE, because d would prefer to join, as they would win the general

election.

• {a, c, d} is not a PNE, because d wins against a in the general election and b would

prefer to join because of the participation bias.

Figure 22: Further example of a keen strategic candidacy game with 4 candidates, party
separability and no PNE

Lastly, we present a result which also holds for KSCGs in the direct system and provides us

with a complete characterisation of PNE of KSCGs for large values of the participation bias
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(i.e. the value of the participation bias overrides a candidate’s preference over two different

outcomes). In this case, the most important thing for all candidates is participating in

the election, as they gain the most utility from doing so.

Observation 8. Let ΓK = ΓK(V,A,R, d, ρ, π, ε, /), ε > maxc,a,b∈A,a 6=b|d(c, a) − d(c, b)|.

Trivially, the strategy profile s, with sa = 1,∀a ∈ A is the unique PNE of ΓK .

5.3.2 Complexity of PNE

Our theoretical analysis has highlighted that it is not trivial to decide whether a KSCG

with a small value for the participation bias admits a PNE, even if the size of the candi-

dates’ set is small. Our results from the average-case analysis on the number of equilibria

of KSCGs with four candidates, presented in the next section, also show that such a game

may have up to three PNE. We could only imagine that as the size of the candidates’ set

increases, investigating the existence of PNE becomes even harder.

To this end, we define the following decision problems, analogous to the decision problems

introduced for ESCGs:

• KeenNE: An instance is a KSCG ΓK = ΓK(V,A,R, d, ρ, π, ε, /), for which ε <

minc,a,b∈A,a 6=b|d(c, a) − d(c, b)| and a strategy profile s. The answer is true if s is a

PNE of ΓK and false otherwise.

• Keen∃NE: An instance is a KSCG ΓK = ΓK(V,A,R, d, ρ, π, ε, /), for which ε <

minc,a,b∈A,a 6=b|d(c, a) − d(c, b)|. The answer is true if ΓK has a PNE and false oth-

erwise.

• Keen∃wNE: An instance is KSCG ΓK = ΓK(V,A,R, d, ρ, π, ε, /), for which ε <

minc,a,b∈A,a 6=b|d(c, a) − d(c, b)| and a candidate c ∈ A. The answer is true is there

exists a PNE s of ΓK with w(s) = c and false otherwise.

We first observe that KeenNE is in P for precisely the same reasons as EagerNE. The

results from Theorem 4 are related to metric spaces of larger dimensions, rather than one
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dimensional games. It is also important to note that questions related to computational

complexity for KSCGs in the direct system have not been considered by Lang et al. [2019],

making our results even more significant.

Theorem 4. Let ΓK = ΓK(V,A,R, d, ρ, π, ε, /), with ε < minc,a,b∈A,a 6=b|d(c, a) − d(c, b)|.

The problems Keen∃NE and Keen∃wNE are NP-complete.

Proof. Before we present our proof, we note that, at a first glance, the proof might seem

very similar to that of Obraztsova et al. [2015] for LSCGs. However, while we adopt the

same strategy for our proof and similar results hold, the reasoning behind is completely

different (as we have mentioned, LSCGs and KSCGs are quite opposite concepts, in the

sense that the former have a negative participation bias and the latter have a positive

one).

We begin by observing that a direct consequence of KeenNE being in P is that both

Keen∃NE and Keen∃wNE are in NP.

To show NP-hardness for the two problems, we describe a reduction from a restricted

version of the exact cover by three sets, which we call RXC3, that was shown to be

NP-complete by Gonzalez [1985]. Let us formally introduce the RXC3 decision problem:

• RXC3: An instance is a set of elements U = {u1, u2, ..., u3r}, a family Z =

{Z1, Z2, ..., Z3r}, with Zl = {uil , ujl , ukl}, of 3-element subsets of U , such that each

element in U appears in precisely three subsets from Z. The answer is true if

there exists a sub-family Ẑ ⊂ Z that is a partition of U , i.e. ∪Z∈ẐZ = U and

Zi ∩ Zj = ∅, ∀Zi, Zj ∈ Ẑ, i 6= j, and false otherwise.

Given an instance (U,Z) of RXC3, with |U | = 3r, let q = 30r2 and we define a keen

strategic candidacy game, ΓK = ΓK(V,A,R6r+4, d, ρ, π, ε, /) with the set of candidates A =

U ∪Z∪{w0, w1, w2, a−1} and n = 3rq+3q+12r+1 voters and ε < minc,a,b∈A,a 6=b|d(c, a)−

d(c, b)|. We set n1 = n − 1, such that π(a−1) = −1 and π(a) = 1,∀a ∈ A \ {a−1} and

describe the preference profiles of the voters and candidates in Tables 6 and 7, respectively.

The voters from Blocks 1-4 in Table 6 are affiliated to party 1 and the sole voter from
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Block 5 is affiliated to party −1. In these tables, we write Ui to denote the order ui �

ui+1 � ... � u3r � u1 � ... � ui−1 over U and U \ U ′, with U ′ ⊂ U to denote the order

U without the candidates from U ′. Moreover, we write Z, U and A to denote arbitrary

orders over Z, U and A, respectively and Z−i to denote an arbitrary order over Z \ {Zi}.

Z \{a−1} is used to denote the arbitrary order Z without candidate a−1. Lastly, we define

the following tie-breaking rule: w1 / U / Z / w2 / w0 / a−1. This game can be encoded in

the hypercube of dimension m, where m = |A| = 6r + 4, so there must exist a function

ρ : V ∪ A → Rm that positions voters and candidates into Rm to obtain the preference

profiles from Tables 6 and 7.

Block 1 (3r voters) Block 2 (6r voters) Block 3 (9r voters)

Z1 Z2 ... Z3r Z1 Z1 ... Z3r Z3r ... Zl Zl Zl ...
w1 w1 ... w1 w2 w2 ... w2 w2 ... uil ujl ukl ...
w2 w2 ... w2 U1 U1 ... U3r U3r ... w2 w2 w2 ...
U1 U2 ... U3r Z−1 Z−1 ... Z−3r Z−3r ... U \ {uil} U \ {ujl} U \ {ukl} ...
Z−1 Z−2 ... Z−3r w0 w0 ... w0 w0 ... Z−l Z−l Z−l ...
w0 w0 ... w0 w1 w1 ... w1 w1 ... w0 w0 w0 ...
a−1 a−1 ... a−1 a−1 a−1 ... a−1 a−1 ... w1 w1 w1 ...

... a−1 a−1 a−1 ...

Block 4 (3r(q − 1) + 3q − 3r voters) Block 5 (1 voter)

u1 u2 ... u3r w2 w1 w0 w1

U1 \ {u1} U2 \ {u2} ... U3r \ {u3r} U1 U1 U1 w2

Z Z ... Z Z Z Z U1

w2 w2 ... w2 w0 w2 w2 Z
w0 w0 ... w0 w1 w0 w1 w0

w1 w1 ... w1 a−1 a−1 a−1 a−1
a−1 a−1 ... a−1 ︸ ︷︷ ︸

(q−2r) copies

︸ ︷︷ ︸
(q−r) copies

︸ ︷︷ ︸
q copies︸ ︷︷ ︸

(q−1) copies

︸ ︷︷ ︸
(q−1) copies

︸ ︷︷ ︸
(q−1) copies

Table 6: Voters’ preferences in the proof of Theorem 4

We will now show that if we have started with a true instance of RXC3, then ΓK has a

PNE s with w(s) = w1, and if we have started with a false instance, ΓK admits no PNE.

This is enough to prove that both problems are NP-hard.

Suppose there exists a sub-family Ẑ ⊂ Z that is a partition of U , then the strategy profile

s, with A(s) = U ∪ {w0, w1, w2, a−1} ∪ (Z \ Ẑ) is a PNE of ΓK with w(s) = w1. Firstly,

let’s analyse the candidates’ scores in the primary of party 1:
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Zl, l = 1, ..., 3r ui, i = 1, ..., 3r w1 w2 w0 a−1
Zl ui w1 w2 w0 a−1
uil w1 w2 w1 w1 A \ {a−1}
ujl w0 w0 w0 U
ukl Ui \ {ui} U U Z
w1 Z Z Z w2

Ul \ {uil , ujl , ukl} w2 a−1 a−1 a−1
Z−l a−1
w2

w0

a−1

Table 7: Candidates’ preferences in the proof of Theorem 4

• w1 receives r votes from voters in Block 1 and q − r votes from voters in Block 4,

with a total of q votes.

• w2 receives 2r votes from voters in Block 1 and q − 2r votes from voters in Block 4,

with a total of q votes.

• w0 receives all their q votes from voters in Block 4.

• Candidate Zi ∈ Z \ Ẑ receives 1 vote from voters in Block 1, 2 votes from voters in

Block 2 and 3 votes from voters in Block 3, with a total of 6 votes.

• Candidate ui ∈ U receives 1 vote from voters in Block 3 and q− 1 votes from voters

in Block 4, with a total of q votes.

So w1 wins the primary of party 1 due to the tie-breaking rule and they also win against

a−1 in the general election. It follows that w(s) = w1.

We now argue that s is a PNE of ΓK :

• w1 is the winner of the general election, so they do not want to withdraw.

• If w2 were to withdraw, u1 would receive all their votes and would become the winner

of the general election. Because w1 �w2 u1, w2 would rather run.

• If w0 were to withdraw, u1 would receive all their votes and would become the winner

of the general election. Because w1 �w0 u1, w0 would rather run.
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• If ui ∈ U were to withdraw, ui+1 would receive all their votes (ui+1 = u1 for i = 3r)

and would become the winner of the general election. Because w1 �ui ui+1, ui would

rather run.

• If Zl ∈ Z \ Ẑ were to withdraw, w2 would receive two more votes and become the

winner of the general election. Because w1 �Zl w2, Zi would rather run.

• If Zl ∈ Ẑ were to run, w1, w2 and w0 would receive q − 1, q − 2 and q votes,

respectively. Moreover, uil , ujl , ukl would receive q − 1 votes, and some ux ∈ U \

{uil , ujl , ukl} would receive q votes and win the primary over w0, due to the tie-

breaking rule and become the winner of the general election. Because w1 �Zl ux, Zl

would rather not run.

• a−1 would lose against any candidate from party 1, so they prefer to run due to the

participation bias.

This shows that s is indeed a PNE of ΓK .

Conversely, suppose ΓK has a PNE s. Then a−1 ∈ A(s), as they would lose against

any candidate from party 1 in the general election and they prefer to participate due

to the participation bias. We begin by showing that U ⊂ A(s). Firstly, suppose, for a

contradiction, that U ∩A(s) = ∅. If u1 were to run, they would receive 3r(q − 1) > n1
2 in

the primary of party 1 and they would win the primary and the general election against

a−1. So u1 would prefer to join the election, contradiction, as s is a PNE of ΓK .

Suppose now, for a contradiction, that U \A(s) 6= ∅.

• If U \ A(s) = {ui}, ui+1 (where ui+1 = u1 for i = 3r) would receive at least 2q − 2

votes in the primary of party 1. Because any other candidate in Z ∪ {w0, w1, w2}

could only receive at most q + 18r votes in the primary and 2q − 2 > q + 18r, the

winner of the primary must be ui+1 or some other uj . Moreover, let’s observe that

all candidates in Z ∪ {w1, w2} must run in s, as their participation cannot influence

the winner of the election, so they prefer to run due to the participation bias. If

w0 ∈ A(s), the winner of the general election is ui+1 and ui would then prefer to join,
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as that would make w0 the winner and w0 �ui ui+1, contradiction. If w0 /∈ A(s),

then the winner is either u1, if ui 6= u1 or u2, if ui = u1. If ui = u1, u2 wins the

general election and u1 would prefer to join the election due to the participation

bias. If ui 6= u1, then u1 wins the general election and ui would prefer to join the

election, due to the participation bias, contradiction.

• If |U \A(s)| ≥ 2 then suppose the winner of the general election is ui.

– If ui is not tied with any other candidate in the primary and the votes of

all candidates not running go to ui, then any of the candidates not running

would prefer to join the election, due to the participation bias, contradiction.

Otherwise, there must exist a candidate uj /∈ A(s) whose votes to go uj+x ∈

A(s). However, uj would prefer to join the election, due to the participation

bias, as the winner would still be ui, contradiction.

– If ui is tied with at least one more candidate uj , then ui / uj . However, the

candidate whose votes go to uj when they do not run, would prefer to join the

election, due to the participation bias, contradiction.

We conclude that U ⊂ A(s).

We next prove that {w0, w1, w2} ⊂ A(s).

• If w0 /∈ A(s). Then u1 would receive at least 2q− 1 votes in the primary, and would

win the primary and general election. Also, all candidates in Z ∪ {w1, w2} would

prefer to run, due to the participation bias, since none of them could influence the

result of the election. However, w0 would prefer to join the election, as they would

win, contradiction. So w0 ∈ A(s).

• If w1 /∈ A(s). Then u1 would receive at least 2q − r − 1 votes in the primary, and

would win the primary and general election. Also, all candidates in Z ∪ {w0, w2}

would prefer to run, due to the participation bias, since none of them could influence

the result of the election. However, w1 would prefer to join the election, as that

would make w0 the winner of the general election and w0 �w1 u1, contradiction. So

w1 ∈ A(s).
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• If w2 /∈ A(s). Then u1 would receive at least 2q − 2r − 1 votes in the primary, and

would win the primary and general election. Also, all candidates in Z ∪ {w0, w1}

would prefer to run, due to the participation bias, since none of them could influence

the result of the election. However, w1 would prefer to join the election, as that

would make w0 the winner of the general election and w0 �w2 u1, contradiction. So

w2 ∈ A(s).

Let’s show that w(s) = w1.

• w(s) = w0, if and only if A(s) = A. However, in this case some Zl would prefer to

withdraw, as uil , ujl , ukl would receive q votes, same as w0, and one of them would

win the primary and the general election, depending on the tie-breaking rule. Let’s

suppose uil would win the general election .Because uil �Zl w0, Zl would prefer to

withdraw, contradiction.

• If w(s) = w2, any ui would prefer to withdraw, as ui+1 would become the winner of

the general election and ui+1 �ui w2, contradiction.

• If w(s) = ui, then candidate ui+1 would prefer to withdraw, as that would make

ui+2 the winner and ui+2 �ui+1 ui, contradiction.

• Clearly candidates Zl ∈ Z cannot be the winners, since they can receive at most 6

votes and candidate w0 receives at least q votes, with q > 6.

We conclude that w(s) = w1. Let’s now observe that there must be exactly 2r candidates

running from Z. If |A(s) ∩ Z| = 2r + x, x > 0, in the primary of their party, w1 would

receive q−r+r−x = q−x votes and w0 would receive q votes, so w1 could not win against

w0, contradiction. Similarly, if |A(s)∩Z| = 2r−x, x > 0, in the primary of their party, w1

would receive q− r+ r+ x = q+ x votes and w2 would receive q− 2r+ 2(r+ x) = q+ 2x

votes, so w1 could not win against w2, contradiction.

If we denote by Ẑ = Z\A(s), we have just shown that |Ẑ| = r. We are now in a position to

show that Ẑ forms a partition of U . Suppose, for a contradiction, that Ẑ does not form a

partition of U . Then there must exist an element ui ∈ U that appears in Zj , Zk ∈ Ẑ, i 6= j.
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However, ui would then receive at least q + 1 votes in the primary of party 1 and would

win against w1, who only receives q votes, contradiction with w(s) = w1.

5.3.3 Number of Equilibria

Given our theoretical analysis concerning the existence of PNE under plurality voting, for

KSCGs with four candidates in one dimension, we also conduct an average-case analysis

on the number of equilibria, motivated by the fact that the cases for which a KSCG admits

no PNE seem very restrictive. Thus, we are interested to discover whether such instances

may arise in practice. We consider both one dimensional and four dimensional KSCGs

games, as for the latter we could have arbitrary voters and candidates’ preferences.

In our experiments, for each candidate, we associate Borda costs to the set of candi-

dates, depending on their proximity to each other and we only consider the plurality and

Copeland voting rules. Since in KSCGs, the smaller the cost of a strategy profile, the more

preferred it is by a candidate, we only need the costs in {0, 1, 2, 3} for the candidates (as

a result, a candidate will have a cost of 0 for themselves). This enables us to use values of

{0.5, 1.5, 2.5} for the participation bias, as, for example, each value between 0 and 1 for

the participation bias induces the same game, as it has the same effect on the overall cost

of a strategy profile.

Moreover, we randomly choose the number of candidates affiliated with party 1 for each

experiment, although we do impose that each party is represented by at least one candi-

date. The methodology is similar to that in Section 4.4, in that we fix the positions of our

candidates, and we then generate between 5 and 101 voters around the candidates. The

results for 10000 instances are displayed in Table 8, with Figures 23 and 24 serving as a

visual aid.
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bias=0.5
0 PNE 1 PNE 2 PNE 3 PNE > 3 PNE

Plurality 1D 7 9903 89 1 0

Plurality 4D 75 9782 140 3 0

Copeland 1D 4 9990 6 0 0

Copeland 4D 7 9978 15 0 0

bias=1.5
0 PNE 1 PNE 2 PNE 3 PNE > 3 PNE

Plurality 1D 0 9998 2 0 0

Plurality 4D 16 9969 15 0 0

Copeland 1D 0 10000 6 0 0

Copeland 4D 0 10000 0 0 0

bias=2.5
0 PNE 1 PNE 2 PNE 3 PNE > 3 PNE

Plurality 1D 0 10000 0 0 0

Plurality 4D 0 10000 0 0 0

Copeland 1D 0 10000 0 0 0

Copeland 4D 0 10000 0 0 0

Table 8: Number of PNE in KSCGs

(a) Plurality (b) Copeland

Figure 23: Number of PNE in one dimensional KSCGs
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(a) Plurality (b) Copeland

Figure 24: Number of PNE in four dimensional KSCGs

The results are quite intuitive: as we increase the values for the participation bias, more

instances admit only one PNE (unsurprising, in those cases the unique PNE is the strategy

profile with all candidates running). Also, we note that the differences between arbitrary

preferences for the four dimensional case and the one dimensional case are very small,

proving that we can get important insights even for one dimensional KSCGs.

Lastly, to answer the question we raised at the beginning of this section, instances that

admit no PNE under plurality voting may appear in practice, although their incidence is

extremely small. However, so can instances that admit more than one PNE, and they do

so at a larger scale, especially for plurality. Under the Copeland voting rule, as expected,

the overwhelming majority of instances, irrespective of the value of the participation bias,

admit only one PNE.

We remark that our results are quite in line with those of Lang et al. [2019] for KSCGs in

the direct system (only the results for five candidates are presented, but the authors claim

that they are similar to those for four candidates). While in their work plurality voting

yields more PNE for smaller values of the participation bias, Copeland drastically reduces

their number. For larger values of the participation bias, the results are almost identical.
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6 Conclusions and Future Work

In this project, we have focused on two directions: extending the results of Borodin et al.

[2019] on how different voting rules, commonly used in real-world scenarios, perform under

the primary and direct systems, and initiating the first analysis of strategic candidacy

games under the primary system.

With respect to the first direction, from a theoretical perspective, we have mainly focused

on the case where voters and candidates are uniformly distributed. We showed that for

plurality voting, there may be instances where the winner in the direct system has a lower

utilitarian social cost than that of the winner in the primary system, with the converse

holding for Condorcet-consistent voting rules. Finally, we have conducted our own average-

case analysis on the distortion of different voting rules, for which we have also considered

higher dimensions for the metric space, as well as the case where voters and concentrated

around distinguished candidates. We have modelled the latter with Gaussian distributions

and investigated whether there is a shift in the quality of the two systems as the means

of the distributions are further away, a phenomenon we termed ”polarization”. Notably,

plurality and STV have displayed interesting trends, which were supported by further

simulations.

Regarding the second direction, we initiated the analysis of strategic candidacy games un-

der the primary systems. We extended and adapted the models for LSCGs and KSCGs to

investigate the properties of their PNE in one dimension. Given the theoretical results for

LSCGs, for which there may exist at most one PNE, we have also considered best-response

dynamics and their convergence to the unique equilibrium state. We concluded that, for

equilibrium-dynamics, the equilibrium state will eventually be reached with probability 1

(once again, we note that this does not imply that the equilibrium state will be reached by

any such dynamics). Moreover, we have introduced a novel model of strategic candidacy

games, for which we have also proven computational complexity results, regarding the ex-

istence of PNE, for larger dimensions of the metric space. We have shown similar results

for KSCGs and we also performed an average-case analysis on the number of equilibria
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for four candidates and a small value of the participation bias. Our results were close to

those in the related literature for the direct system, with most games admitting only one

PNE (in most of those instances, the strategy profile with all candidates running was the

unique PNE).

There are several possible directions for further work. Firstly, for the comparison between

the two systems, one could theoretically consider a probabilistic model, where each party

is represented by a distribution (e.g. Gaussian distribution) and then random samples

are drawn to obtain the candidates and voters’ positions. We would be interested in

answering the following question: ”is it the case that primaries are better with high

probability?”. Secondly, other particular cases (e.g. where the ratio between the number of

voters and candidates from each party is fixed and the candidates and voters are uniformly

distributed) could be considered in both one and higher dimensions. Finally, it would be

relevant to verify whether our results generalise to settings with more than two parties.

Regarding strategic candidacies under the primary system, one could investigate whether

our results about the properties of PNE for each category of games generalise for higher

dimensional games. Similarly, other voting rules, apart from plurality, could be considered.

Lastly, another direction would be considering strategic voting, or perhaps even combining

the two concepts (similar to what Brill and Conitzer [2015] do for the direct system).

6.1 Reflection

Working on this dissertation has been an incredibly enjoyable experience. Computational

social choice and, more specifically, voting, is a very broad field, thus with rich possibilities

for research. Having initially conducted a comprehensive background review on the topic

of voting in primary systems, I started with less difficult questions and, as I was making

progress on the topic, I managed to eventually consider more demanding questions.

The subjects covered in the Computational Game Theory were the most relevant to this

project. However, I also believe that, focusing on writing structured proofs in the Prob-

ability and Computing, Probabilistic Model Checking and Automata, Logic and Games
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modules has also helped me present the results in a scholarly manner. Dealing with the

COVID-19 pandemic and having to complete almost the entirety of my MSc degree re-

motely was not easy and, at times, very challenging. Nonetheless, I am content with what

I have achieved in this thesis, not only limited to the presented results, but also to the

in-depth understanding I have acquired on the topic.
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Appendix A Difference in Distor-

tion

(a) Plurality (b) Plurality Run-off (c) Anti-plurality

(d) Borda (e) Harmonic Borda (f) STV

(g) Copeland

Figure 25: Difference in distortion between the primary and direct system for separable
three dimensional election instances
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(a) Plurality (b) Plurality Run-off (c) Anti-plurality

(d) Borda (e) Harmonic Borda (f) STV

(g) Copeland

Figure 26: Difference in distortion between the primary and direct system for three di-
mensional election instances

96



(a) Plurality (b) Plurality Run-off (c) Anti-plurality

(d) Borda (e) Harmonic Borda (f) STV

(g) Copeland

Figure 27: Difference in distortion between the primary and direct system for separable
five dimensional election instances
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(a) Plurality (b) Plurality Run-off (c) Anti-plurality

(d) Borda (e) Harmonic Borda (f) STV

(g) Copeland

Figure 28: Difference in distortion between the primary and direct system for five dimen-
sional election instances
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